【摘 要】
:
中红外技术的开发与应用具有重要的战略意义,在军事、医疗与工业等领域均有广泛应用价值,而各种先进中红外材料及器件也成为该领域的研发热点。对比传统光学材料和器件,超表面可以在亚波长结构的基础上引入相位突变,通过对超表面单元的排布完成对电磁波的调控,具有结构简单、调控自由度高、兼容半导体工艺等特点,在实际的应用中具有极大的优势。通常超表面器件都只具有单一功能,并且在完成设计制备后很难进行重构,无法满足变
论文部分内容阅读
中红外技术的开发与应用具有重要的战略意义,在军事、医疗与工业等领域均有广泛应用价值,而各种先进中红外材料及器件也成为该领域的研发热点。对比传统光学材料和器件,超表面可以在亚波长结构的基础上引入相位突变,通过对超表面单元的排布完成对电磁波的调控,具有结构简单、调控自由度高、兼容半导体工艺等特点,在实际的应用中具有极大的优势。通常超表面器件都只具有单一功能,并且在完成设计制备后很难进行重构,无法满足变焦透镜等动态器件的需求。因此多功能、可调型中红外超表面成为超表面技术的重要发展方向之一。本论文利用GST相变材料,基于广义斯涅耳定律,设计了多种光学功能可调的中红外可调型超表面器件,通过GST相变特性实现了对红外光的动态调控,并根据几何光学和惠更斯原理,构建了针对器件可调性快速分析的半数值算法。本论文的研究内容如下:(1)以GST/Si双层圆柱为超表面结构单元,结合Si O2介质层与Au基底反射层,仿真分析了不同半径圆柱单元的反射系数与相位。在广义斯涅耳定律的基础上,通过优化排布具有两种不同相变状态的GST单元结构,以此设计了具有主动调功功能的超表面器件。(2)在中红外5.3μm频点分别设计了焦距可调型超透镜与功能可调型超表面器件。利用GST两种相变状态下超表面器件所具备的不同相位轮廓,分别实现不同焦距的转变与聚焦/偏转功能的切换。并通过FDTD仿真与半数值算法验证了两种可调型超表面的可行性。可调超透镜其实际焦距分别约为32.6μm与68.4μm,数值孔径分别为0.919与0.706,聚焦效率分别为14.7%与16.3%。功能可调型器件完成了约10°的实际反射偏转与焦距为71.4μm的1D线聚焦,该1D聚焦超透镜数值孔径为0.576并具有13.6%的聚焦效率。(3)在中红外7.4μm频点,选取具有不同尺寸大小的单元结构设计编码子阵列,利用GST的相变特性实现对编码序列的改变。采用编码子阵列设计了一种可调型波束分离器,使垂直入射波可在镜面全反射和反射为两/四束波的状态下切换,反射束的实际俯仰角分别为12.4°与17.4°,并且不同的反射束具有相近的反射功率。本文设计了一种可调型随机编码超表面,能够将垂直入射波均匀地反射到四周,减少垂直方向的反射功率。经过三组不同随机序列结构的仿真,通过改变GST相变状态,其垂直方向的平均反射功率从-97.95d BW/m~2降至-88.88d BW/m~2。
其他文献
太赫兹波是频率在100GHz-10THz的电磁波,其电磁频谱处于微波与光波之间,因此兼具微波与光波的优点:频带宽、投射性好、量子能量低等,具有重要的科学价值和战略需求。太赫兹波在生物医疗、大气环境检测、高速无线通信、安全检测等领域具有广阔的应用前景。在这些应用中,成像技术始终是太赫兹应用领域的研究热点之一。太赫兹成像系统由于其载频高、易实现大带宽、安全性好、对非极性材料具有良好穿透性等优点,可以广
无线信息传输技术的快速进步,有力地促进了社会的发展。但由于信息泄露、数据窃密所造成的损失也更加严重,因此有关无线信息安全传输技术的研究也越来越受到人们的重视。为了从物理层提供更为安全的无线信息传输链路,位于射频前端的方向调制技术近年来引起了广泛关注。发射的信号随着传播方向的变化而变化是这一类方向调制技术的显著特征。相对于传统的方向调制技术,基于四维天线阵的无线信息安全传输技术具有传输速度更快、保密
由于毫米波的短波长和宽频带特性,其在通信、雷达、射电天文、遥感等领域体现了较大的应用价值,毫米波技术成为近年来研究的热门领域,毫米波系统中毫米波源的需求也日益增加。借助毫米波倍频器可以更好得获取频率稳定度和相位噪声特性较好的毫米波频率源。其中有源倍频器的损耗小,甚至有实现变频增益的可能性。得益于有源倍频技术在倍频增益上的优越性,其能够有效降低毫米波源的设计指标和难度。因此,本文对毫米波有源倍频器的
近年来,为了满足无线通信发展对于大容量、高数据传输速率的需求,通信卫星朝着高通量、低轨道的趋势发展。瓦片式有源相控阵天线体积小、剖面低、波束切换快、集成度高,对于空间利用率极高的卫星通信具有较强的应用价值。非规则瓦片式有源相控阵天线在空间紧张的卫星通信上可以应用于特定的空间尺寸设计,不再局限于常规的2的幂次方阵列规模,可充分布局,同时相控阵系统各模块采用垂直布局也能提高系统空间利用率,具有较强的实
进入信息时代以来,无线通信已成为人们日常沟通交流的必要手段。无线基站作为通信链路中必不可少的一环,它直接决定了通信质量的好坏。现代人的生活、工作方式决定了无线通信主要发生在室内,因此室内基站的需求量巨大,尤其是在城市地区,建筑物密集,人口密度大,室外基站远远无法满足当今的通信需求。室内基站的解决方案主要包括安装在墙壁的定向基站天线和安装在天花板的全向基站天线,后者应用更为广泛。对于室内吸顶基站天线
传统的利用谐振腔作为微波谐振装置的ESR(电子自旋共振)测试系统只能测试粉末和液体样品,无法在不破坏样品的情况下测试薄膜样品。为了不破坏样品的条件下对薄膜ESR信号进行测试,本论文设计了以直接装样型谐振腔和微带谐振器作为谐振装置的两种测试系统来对薄膜样品进行在线表征。第一种系统为锁相放大器作为信号终端的测试系统;第二种系统为矢量网络分析仪作为信号终端的测试系统。锁相放大器的测试系统利用微波源和功率
信息技术的前进步伐不断加大,造就了集成电路产业的蓬勃发展,促使电子封装成为当前的热门领域,寻求性能优异的LTCC封装基板材料迫在眉睫。镁铝硅微晶玻璃因具有优良的性能逐渐成为关注的焦点,但是目前还存在烧结温度过高,难以和低熔点电极共烧以及抗弯强度与热膨胀系数不稳定等问题。因此,本文以镁铝硅微晶玻璃为对象,通过掺杂改性,研究了不同元素对本体系晶相组成、微观结构以及综合性能的影响,并对烧结和析晶过程进行
以InGaZnO为代表的氧化物半导体薄膜晶体管具有电子迁移率高、截止电流低、稳定性强、均匀性好、可见光透明和制备温度低等诸多优点,有望取代传统非晶硅和低温多晶硅成为下一代主流的薄膜晶体管。基于InGaZnO薄膜晶体管的电路不仅可以应用到显示领域,还可以应用于柔性电子、传感器等多个领域。由于p型氧化物薄膜晶体管的电学性能普遍较差,难以匹配n型氧化物薄膜晶体管的电学性能,故当前报道的基于InGaZnO
随着新一代的微波器件向着小型化、集成化的方向发展,YIG铁氧体材料的铁磁共振线宽、介电损耗、饱和磁化强度、居里温度等有关的综合性能需满足更高的性能要求。本文采用固相反应法制备目标YIG铁氧体材料,主要探讨低损耗YIG材料的实现途径及其应用。首先,研究缺铁量对YIG铁氧体材料物相组成、显微结构、电磁性能等方面的影响,研究表明:采用缺铁配方有助于减少铁磁共振线宽与介电损耗;过量缺铁会导致另相YFeO3
无线信息技术的发展对于通讯系统的性能提出了越来越高的要求。多功能及其集成化是目前通讯系统的发展趋势。通讯系统性能的提升对天线设计提出了更高的挑战。在此背景下,通过在同一辐射口径内集成不同性能的天线或者采用相邻天线共享部分辐射单元的方法来实现多通道或多功能子集系统融合的共口径天线对于解决通讯系统多频段、多极化、多波束以及集成化等需求有着显著的优势和广阔的应用前景。本文对共口径天线的研究动态进行了总结