嗜酸喜温硫杆菌铜敏感型转录因子CsoR性质、功能及调控机制研究

来源 :江南大学 | 被引量 : 0次 | 上传用户:Liudeyuan123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
嗜酸喜温硫杆菌(Acidithiobacillus caldus)是一种浸出铜矿石的典型菌株,虽然该菌株具有较高的铜抗性,但是浸出过程中积累的大量铜离子仍然会大幅度影响菌株的浸出效率。铜敏感型操纵子阻遏蛋白(CsoR)能够调控许多解毒相关的基因以抵抗极端铜胁迫压力,该蛋白的深入研究对于构建高效铜抗性菌株和提高A.caldus浸出率具有重要的理论价值和应用价值。本研究以A.caldus来源的铜敏感型转录因子CsoR为对象,利用分子生物学、生物化学以及EMSA等技术对CsoRAc的性质、功能以及可能的调控机制进行了一系列研究。(1)课题成功鉴定了A.caldus来源的铜敏感型转录因子CsoR。CsoRAc具有高度保守的铜离子结合关键氨基酸位点Cys33、His58和Cys62,同时具有保守的几乎全α螺旋结构以及构成“核心”区的氨基酸序列。(2)PⅢ为cso R的启动子,但PⅢ与CsoRAc的体内结合活性较弱。在E.coli DH5α中PⅢ启动子活性最高,为阴性对照的1.5倍。此外,PⅡ启动子与CsoRAc表现出了一定的体内结合活性,在受到Cu(Ⅱ)、Co(Ⅱ)、Cd(Ⅱ)和Zn(Ⅱ)诱导时,菌株E.coli DH5α(p JN19-ProⅡ-EGFP)的EGFP荧光强度与自身对照组相比分别提高了约3倍、5.7倍、2.6倍以及1.8倍;但EMSA结果表明PⅡ启动子与CsoRAc无体外结合活性。(3)CsoRAc重组蛋白能够在E.coli BL21(DE3)中实现胞内可溶性表达。重组CsoRAc的分子量约为13.5 k Da,结构主要为α螺旋,在天然状态下为四聚体。每摩尔CsoRAc单体能结合0.8摩尔的Cu(Ⅰ),CsoRAc与Cu(Ⅰ)结合后仍为四聚体状态。CsoRAc与Cu(Ⅰ)的亲和力在BCS/BCA体系中分别为2.26×10-18 mol·L-1和0.53×10-15 mol·L-1。关键氨基酸位点Cys33、His58和Cys62的定点突变基本没有改变CsoRAc的二级结构和聚体状态,也没有对蛋白的Cu(Ⅰ)结合能力产生太大影响,CsoRAc与Cu(Ⅰ)的亲和力仍与apo-CsoRAc处于同一数量级。(4)CsoRAc以四聚体的形式与靶点DNA结合,但亲和力较低,只有借助高灵敏度的荧光标记法才能观察到阻滞条带。此外,CsoRAc能够与P08430片段结合生成两种阻滞条带,条带中复合物的DNA和蛋白质比例分别为1:4和1:8。
其他文献
表没食子儿茶素没食子酸酯(Epigallocatechin gallate,EGCG)是绿茶儿茶素中的一种主要活性成分,在食品,医药等领域都有广泛的应用前景,然而目前尚未有很好的简便、快速、低成本、环境友好的制备高纯度EGCG的方法。此外,EGCG较低的贮藏稳定性和胃肠道稳定性也限制其在生产中的应用。因此,本文研究并优化了国产大孔树脂纯化茶多酚中EGCG单体的工艺,并以脂质体、类脂质体和胆盐脂质体
由于涂敷工艺便捷环保及成本低廉等特点,无机粘结陶瓷涂层成为保护机械设备免受磨损和腐蚀破坏的主要表面涂层之一。但无机粘结陶瓷涂层脆性大使其耐蚀耐磨性较差,并且纳米碳增强材料也存在与涂层结合强度不高的问题。因此,本文以氧化石墨烯(GO)为增强相,改善涂层的耐蚀磨性,并通过杂化氧化锌-氧化石墨烯(ZnO-GO)纳米材料,提高GO与涂层的界面结合强度。研究了ZnO-GO杂化材料对无机粘结陶瓷涂层抗腐蚀-摩
自人们发现石墨烯以来,二维材料成为了当下研究的热点。过渡金属硫族化合物(TMDs)作为二维材料中的一员由于具有可调的带隙、较高的载流子迁移率、电催化过电位低等特性,弥补了石墨烯本身零带隙的缺陷,在数据存储器件,能量转换器件及激光光偏振器件等领域有巨大的潜力而备受研究者的关注。与主流的2H相的Mo S2,WS2不同,Re基TMDs具有扭曲的1T结构、较弱的层间耦合作用和很强的面内各向异性光学性质,这
随着减糖需求的高涨,低热量高倍甜味剂,如天然甜菊糖苷目前已成为代糖领域的研究热点。但这类单体存在的风味缺陷使它们的应用受到了限制,因此开展全面深入的感官分析对于研究其结构和甜苦味关键属性间的关系,再深入探讨它们共同引发的因素是至关重要的。文章主要的研究内容和结果如下:首先通过静态描述性分析和动态时间-强度法对六种具有代表性结构的甜菊糖苷单体进行风味特征评估,再结合偏最小二乘回归关联结构与味觉特性参
微波作为一种绿色、高效的新型物理场加工技术,已被陆续应用于食品加工领域。在熟化米面食品方面,由于微波的快速加热机制,导致食品熟化过程中发生不充分的理化反应,易引发品质劣变,限制了其在米面食品加工领域的应用与推广。酸面团作为一种天然的食品改良剂,能够改善发酵米面食品品质,并且其中的极性分子能够有效干预微波加热效果。然而,目前鲜有酸面团对微波熟化米面食品影响的研究。因此,本研究以微波熟化发糕为研究对象
聚合物/粘土纳米复合材料将有机高分子与无机纳米粘土(MMT)特性充分结合,展现出优异的功能性和极高的应用价值,成为了近年来的研究热点,但由于粘土与聚合物的相容性差,存在着如何实现粘土的定向排列以解决其分散性等问题。因此本课题设计对MMT进行有机改性处理并与水性聚氨酯(WPU)、聚乙烯醇(PVA)、热塑性聚氨酯(TPU)复合制备了一系列聚合物/粘土纳米复合材料,具体研究内容如下:1.设计采用氨基磺酸
鲭鱼(Pneumatophorus japonicus)是我国重要的经济鱼类之一,具有分布广、产量高、肉质紧实、营养丰富、价格低廉等特点。但是目前对于鲭鱼的应用较为简单,加工利用程度还有待加强。发酵鱼制品历史悠久,尤其是鱼露、鱼酱等产品以其独特风味在调味品行业中占有重要的市场份额。本课题通过接种乳酸菌(LAB)发酵低盐鲭鱼调味品,研究了乳酸菌对发酵鲭鱼调味品基本理化特性的影响,分析了整体风味轮廓、
聚四氟乙烯(PTFE)具有化学性能稳定、耐高低温、自润滑性能好和摩擦系数极低的特点,是目前新型的工程塑料,但是由于耐磨性较差限制了其在很多领域的应用。为了将聚四氟乙烯应用到更多场合,需要研究如何提高聚四氟乙烯涂层的摩擦学性能。针对以上问题,本论文通过优化各组分之间的配比,制备了PTFE复合涂层,并填充纳米颗粒进一步改善PTFE复合涂层的摩擦学性能,系统的研究了纳米颗粒在涂层中的作用机理。首先,对P
青藏高原海拔高、昼夜温差大,被称为“地球的第三极”。芫根(Brassica rapa L.)是一种深受青藏高原地区人民喜爱的食用植物,主要用于缓解高原缺氧、疲劳、咳嗽、气喘等症状。多糖是芫根中主要的活性物质,具有抗疲劳和体内外抗氧化活性。疲劳是一种机体为避免过度运动、过度劳累而导致组织受损的保护性生理现象,会引起身体机能下降,过度疲劳甚至会导致疾病。芫根多糖的抗疲劳功效已被证实,但其抗疲劳机理尚未
金属腐蚀不仅对生产生活造成了巨大的安全隐患,而且造成了严重的环境污染。目前主流的金属防腐手段就是在金属器件表面涂装防腐涂料,然而传统的溶剂型涂料由于高污染、高能耗等缺陷而饱受诟病。UV固化涂料具有高效、低能、环保等优点,在众多的领域均有着广泛的应用,但是在金属防腐领域却鲜见报道。主要原因有二:一,长久以来金属防腐涂料主要以溶剂性涂料为主,对于UV固化涂层的阻隔性能和防腐性能的影响因素缺乏认知;二,