论文部分内容阅读
由于NCS较传统点对点连接的控制系统,在规模、结构等方面更加庞大、复杂,各种不确定性和故障诱发因素也更多,一旦发生故障就有可能造成人员和财产的巨大损失,因此通过容错设计使NCS具有较高的安全可靠性,已经受到了广泛的关注。本文针对研究之初NCS容错控制成果中,受控对象以线性为主,控制策略大多采用状态反馈,结论主要为保守性较大的时滞不依赖的完整性设计等问题,研究了同时存在时变时延和丢包的不确定非线性NCS (NNCS)的鲁棒容错控制问题。总体概略如下:1)针对同时存在时变时延和丢包的不确定NNCS,将丢包看做是一种特殊的时延,基于T-S模糊模型,在可能的执行器或传感器失效故障下,考虑状态变量可测时和不可测时2种情况,分别采用状态反馈和基于状态观测器的动态输出反馈控制策略,建立了不确定闭环故障NNCS的模型。特别是基于状态观测器的动态输出反馈控制的建模中,时延采用了更符合工程实际的分段处理方法,并分别考虑了分段时延的上下界,为后续少保守性结论的获得奠定了基础。2)采用状态反馈控制策略,以时滞依赖的方法,通过构造适当的Lyapunov-Krasovskii泛函,综合应用自由权矩阵、积分不等式、交叉项界定、线性矩阵不等式等方法和技术,研究了不确定NNCS对执行器或传感器失效故障的鲁棒容错控制问题,得到了使不确定NNCS具有鲁棒完整性、鲁棒H。完整性、鲁棒保性能及鲁棒H∞保性能容错等少保守性的时滞依赖充分条件和控制器的优化设计方法,并对所得结论进行了有效性仿真验证和保守性比较研究。由于结论中包括了有关时延属性的所有信息,尤其是时延下界τm的引入,使得结论的保守性得以减少。另外,在分析中未进行模型变换,也未放大任何项和忽略有用项,而是借助Newton-Leibniz公式和积分不等式引入了较多自由权矩阵,使得求解的自由度变大,保守性也进一步减少。3)采用基于状态观测器的动态输出反馈控制策略,首先应用类似前述状态反馈控制的研究方法,研究了不确定NNCS对执行器失效故障具有鲁棒完整性及鲁棒H∞完整性的容错控制问题。其次,考虑采用动态输出控制策略后对时延的分段处理,前述方法因过多自由权矩阵的引入会产生大量的决策变量导致计算更加复杂,进而在研究鲁棒保性能及鲁棒H∞保性能容错控制问题时,仅通过改进的Jensen不等式对交叉项进行了处理,并引入了时延信息的中间量α1和α2以适当降低矩阵维数。由于未通过Newton-Leibniz公式引入任何自由权矩阵,明显减少了由此带来的过多决策变量所引起的计算负担,以及过多决策变量优化而可能产生的保守性。通过上述研究,得到了使不确定NNCS具有鲁棒完整性、鲁棒H∞完整性、鲁棒保性能及鲁棒H∞保性能容错等少保守性的时滞依赖充分条件和控制器优化的设计方法,并对所得结论进行了有效性的仿真验证。文中,还就保守性及计算复杂度对2种方法进行了比较研究,结果表明后一方法在减少结论保守性和降低计算复杂度上更具优势,进而昭示出对提高不确定NNCS容错满意度的益处。4)借助于兰州理工大学先进控制实验室的PCS平台,基于OPC等技术成功开发了虚拟NCS试验平台,并在此平台上对所有理论成果进行了工程可用性实验研究。结果表明构建的虚拟NCS试验平台运行可靠,所有理论结果正确、有效。由于该平台的灵活性,为复杂NCS的时延研究提供了便利。总之,本文针对不确定NNCS所提出的一系列少保守性、高满意度、低复杂度的鲁棒容错控制器的设计方法,将成为提高NCS安全可靠性的重要途径。尤其是针对实际工程上状态变量可能不易全部获得的情形,将状态观测器、控制器、网络属性、故障等统一在T-S模糊模型框架下,进行的鲁棒容错控制研究,为NNCS的被动容错控制率先探求了行之有效的方法。