【摘 要】
:
近年来,无线通信的迅猛发展使得如何提高无线通信传输能力成为一个亟待解决的问题,而引入超高频段电磁波,如太赫兹和可见光,成为解决此问题的有效途径。但不论是太赫兹还是可见光通信,它们在硬件上的要求和传统的射频通信不同:可见光通信中的强度调制要求发送信号是实正数;而太赫兹通信中现有的技术和器件都不能完全满足太赫兹波的需求。因此针对超高频段的特性选择合适的调制方法,以实现高速率和高效率传输,在通信领域成为
论文部分内容阅读
近年来,无线通信的迅猛发展使得如何提高无线通信传输能力成为一个亟待解决的问题,而引入超高频段电磁波,如太赫兹和可见光,成为解决此问题的有效途径。但不论是太赫兹还是可见光通信,它们在硬件上的要求和传统的射频通信不同:可见光通信中的强度调制要求发送信号是实正数;而太赫兹通信中现有的技术和器件都不能完全满足太赫兹波的需求。因此针对超高频段的特性选择合适的调制方法,以实现高速率和高效率传输,在通信领域成为研究热点之一。本论文旨在探索空域索引调制技术在可见光通信中的应用,并提出多种自适应预编码算法提升性能。同时,对有硬件失真的太赫兹空间调制系统进行了研究,结合机器学习技术优化检测性能。本论文的主要内容如下:第一章主要介绍了超高频通信的特点和发展前景,它们的硬件的特殊性使得研究相应的调制技术具有重要的意义。此外,本章对可见光、太赫兹通信系统的调制技术发展以及现状进行了详细的介绍。第二章介绍了空间调制技术和增强型空间调制技术的原理,并用并集界方法分析其误码率性能。此外,针对可见光通信场景,本章介绍了其信道模型和三种经典的可见光调制技术,包括两种常用的光学正交频分复用(Optical Orthogonal Frequency Division Multiplexing,O-OFDM)技术,牺牲天线索引避免削波的非直流偏置光OFDM(Non-DC-biased OFDM,NDC-OFDM)技术。最后,本章对比仿真了各O-OFDM系统的性能,且将增强型空间调制和O-OFDM结合,仿真结果验证了增强型空间调制相较空间调制在相同传输速率下有更好的误码率性能。第三章对光学空间调制系统的自适应预编码算法进行了研究。本章建立了优化问题,首先考虑两个光发射器的光学空间调制系统,推导了任意调制阶数的脉冲幅度调制的闭式解,并通过缩小差错向量空间减小复杂度。在此基础上,针对有更多光发射器的系统,本章提出了一种低复杂度的迭代(Low Complexity Iterative,LCI)算法和一种连续凸逼近(Successive Convex Approximation,SCA)辅助的优化方法,将非凸的二次规划问题转化为一系列线性凸的子问题。此外,为了进一步利用空域的自由度,本章提出对不同的空间调制符号进行自适应预编码的方案。仿真结果表明,与传统的无预编码的系统相比,这些算法能够显著提高系统的误差性能。引入的逐符号的逐步凸逼近算法,在误码率方面优于逐信道的算法。第四章介绍了考虑硬件失真的太赫兹空间调制系统,且研究了针对该系统的信道估计和检测技术。由于硬件失真在太赫兹通信中不能被忽略,我们介绍了硬件失真的数学模型,研究了适用于太赫兹空间调制系统的均值最小二乘估计和其最优检测。此外,为了克服最大似然检测复杂度高的缺点,本章提出了基于极端学习信道估计和检测器,并且将其与基于其他神经网络的信道估计和检测器对比,通过仿真验证其性能。第五章对全文进行了简要总结,并指出研究的不足和对未来的研究方向。
其他文献
为了应对日益增长的信息安全威胁,人们对通信网络的安全要求越来越高,其中光接入网安全性对通信网络的安全尤为重要。光接入网在下行信道中的广播通信存在被窃听的风险,因此开展光接入网安全研究尤为关键。现有的光接入网安全方案中,上层加密、光编解码和混沌激光通信等方案还存在不能全数据加密,密钥空间有限,信号同步稳定性较差等不足。而光物理层混沌加密技术则在上述方面表现出了较大优势。正交频分复用无源光网络(Ort
表面湿粘附研究是力学、材料和生物多学科交叉领域的研究热点,具有重要的实际应用价值。本文首先研究了三相接触线对表面迟滞的影响,并用软件Surface Evolver对模型进行了模拟比较,结果与模型符合。同时我们还制备了一系列相同面积比的微米表面,并对表面的迟滞行为进行了实验测试,测试结果证明了三相线模型的正确性。在湿粘附部分,本文建立了一个二维模型研究壁虎脚趾多绒毛结构增强湿粘附的机理。利用二维模型
随着第五代移动通信技术的发展,大量移动终端接入网络,导致对数据业务的需求急剧增加,如何快速有效获取内容是用户非常关心问题。为了满足用户对移动数据爆炸性的需求,同时最大程度地降低能源消耗,通信系统需要在能耗、吞吐量和用户的延迟方面来提高网络性能,因此为了更好地利用网络资源,D2D通信和缓存是支持无线网络上大量内容传输有前途的方法。此外电池供电的移动设备之间频繁发送数据会很快耗尽其能量,而能量收集是为
近年来,患上心理疾病的人数越来越多,心理问题呈现复杂多样的特点,并且平均年龄有逐渐减小的趋势。因此小学的心理健康教育对社会的心理健康发展有着举足轻重的作用,这提示我们应该从小培养儿童良好的心理健康素质。但是,当前小学的心理健康教育受限于各种社会因素存在普遍的问题。本论文将从不同类群小学生心理问题差异及教育对策来进行论述。
本论文在考虑环境相干性影响的情况下,讨论了量子系统与环境之间的能量交换。在已有工作的启发下,本文以时间局域的(time-convolutionless, TCL)主方程为工具,研究在环境相干时间内,二能级系统和谐振子系统与环境间的热交换以及热平衡的形成过程。利用两种快速量子操控方法:量子芝诺效应和量子bang-bang操控,本文进一步研究了利用bang-bang操控控制谐振子热力学性质的方案。从实
量子计算机可以更有效的解决某些问题,比如:对无序数据库的搜索问题和大数质分解问题。尽管量子计算机有着强大的运算潜力,但建造量子计算机却是件非常艰巨的任务。在所有这些困难中,消相干问题和硬件设计问题可能是最难处理的。消相干是由于量子计算机与环境的相互作用或纠缠,导致系统从相干状态向非相干态演化的趋势,并可能最终导致储存在量子计算机里的信息的崩溃、量子计算失败。量子计算机硬件设计中存在问题是如何实现量
今天,全球会展业都面临着新技术的持续影响和新冠肺炎疫情的冲击,而中国会展业还处于百年未有之大变局中。加入WTO以来,中国的会展业和会展教育迎来了快速发展的黄金20年。随着国民经济发展和社会进步,一方面会展业已延伸到日常生活和文化领域中,近年来各城市的节庆、赛事、活动层出不穷,聚小成多,其总体规模和影响力不亚于一般的展览业和大型活动;另一方面会展与营销、旅游、文化、艺术、媒介已呈现深度融合的趋势,并
本文针对高轨卫星外辐射源雷达系统中微弱目标检测技术做了一定研究。该系统首先利用高轨卫星发射信号照射目标,然后利用地面的雷达接收目标回波,以达到探测目标的目的。然而由于高轨卫星与目标距离与目标离雷达的距离较远,使得雷达接收到的目标回波信噪比较低。为了使信噪比达到目标检测的要求通常需要对回波进行长时间积累处理,但是较长时间的相参积累会带来距离走动和多普勒走动的问题,针对此问题,对长时间积累算法进行了一
作为无线通信系统的关键增强技术之一,中继通信技术是扩大无线服务覆盖范围,提升边缘用户通信质量,促进通信网络负载均衡的有效手段。其中双向中继技术因为占据高频谱效率、低中继时延等优势,备受研究领域关注。此外,为避免发射信号对接收信号造成强干扰,双向中继系统的节点大多采用半双工工作模式,这会给无线中继系统带来部分资源损失,因此结合新的技术设计有效的方案以优化现有中继系统的性能,具有重大的理论价值与实践意
在图像处理与计算机视觉迅猛发展的过程中,大规模数据及标签的监督学习是人工智能的关键因素,然而,在实际场景中,有些类别难以获取足够多的数据、标签注释需要花费极高的人力物力,以及传统的监督学习无法识别未见过的类别,这些问题使得零样本学习成为目前更现实且急切的需求。针对上述困难,本文主要研究中小规模数据下的零样本及广义零样本图像分类与视频动作识别问题。零样本学习赋予了模型像人类一样学习的能力,通过将可见