论文部分内容阅读
随着我国智能电网全面快速发展,电网数字化、信息化程度越来越高,电网安全生产运行越来越依赖大量综合信息。智能电网对各类实时和非实时广域海量全景状态信息进行精确采集和高效传输,并实现“三流”融合、高度集成与共享,相比传统电网监测系统,智能电网广域监测范围、监测节点数、监测信息类型及监测信息量等明显增加。在智能电网向能源互联网演化进程中,新业务蓬勃发展使得电力通信网业务变得复杂多样化,业务逐层汇聚后通过电力通信网进行传输,对电力通信网提出了更高要求,且随着智能电网、信息系统、营销系统等发展产生了海量数据交互,带宽需求急剧上升,现有传输网络已无法满足,导致智能电网高级应用系统功能无法实现,严重影响电网安全、稳定运行。为满足智能电网对海量数据在线监测、传输、存储的需要,实现智能电网高级应用系统功能,确保电网安全、稳定、经济运行,本文针对智能电网海量数据传输和存储轻型化的需求,从压缩采样、基于低秩Hankel矩阵的非均匀采样、最少特征信息提取、轻型协议数据生成及原始海量数据还原等方面进行研究,论文的主要内容如下:
(1)针对Ⅰ型信号(即数据含脉冲信号或振荡信号)提出一种采用压缩感知理论实现智能电网海量数据轻型采样的方法。电网发生扰动,基于事件触发机制对扰动发生前后一个观测时窗内数据进行在线录波,并完整采样记录,采用扰动检测方法精确定位扰动时间。然后,采用深度学习网络对数据进行快速模式识别,数据为Ⅰ型信号,数据各分量按照一定顺序选择强相关原子库进行稀疏分解,强相关原子库是根据数据分量的动态特性、数学模型构建的冗余原子库,可有效提升数据分量稀疏性,降低数据总稀疏度大小和优化测量矩阵规模,数据压缩采样数据量更少。为增强数据压缩采样实时性,通过设置内积常数以减少原子库子集的规模、采用智能算法加快原子匹配追踪、采用正交投影矩阵更新代替稀疏分解的最小二乘法避免多次求解逆矩阵等措施,降低数据分量稀疏分解的时间。最后,对脉冲数据分量采用信号共振稀疏分解(RBSSD)进行增强提取,对需监测的弱数据分量幅值进行增幅,并采用谐波滤除(HF)算法进行滤除,有效提高数据分量重构精度。通过算例分析,验证了对Ⅰ型信号进行压缩采样的精确性和有效性。
(2)针对Ⅱ型信号(即数据只含类基波信号、短期变动信号),提出一种采用低秩矩阵填充理论实现智能电网海量数据轻型采样的方法。采用深度学习网络对数据进行快速模式识别,数据为Ⅱ型信号,数据由算子Ξ组成Hankel矩阵,基于低秩Hankel矩阵对数据进行非均匀采样,减少数据采样量。首先,对信号数据组成Hankel矩阵的低秩性进行了严格数学证明,得出智能电网海量数据具有低秩性。数据非均匀采样点由算子Ξ组成部分元素被观测待恢复的Hankel矩阵,采用矩阵填充恢复算法恢复矩阵,对恢复矩阵副对角线元素求平均值恢复信号,恢复信号相对误差满足要求时,将数据非均匀采样点的位置形成位串uv,可用于快速确定观测时窗后数据的非均匀采样点。最后,针对采用随机采样矩阵确定数据非均匀采样点存在随机性、计算量大等缺点,采用斜率差绝对值(AVGD)方法可快速确定数据非均匀采样点,低秩矩阵填充还可利用数据周期性、对称性、奇偶性等特征,简化确定数据非均匀采样点的计算。通过算例分析,验证了对Ⅱ型信号采用基于低秩Hanel矩阵的非均匀采样方法的精确性和有效性。
(3)针对智能电网海量数据轻型传输,提出基于最少特征信息传输原理的智能电网海量数据轻型传输方法。数据为Ⅰ型信号,数据压缩测量值采用重构算法,对数据稀疏表示向量进行重构,稀疏表示向量经分析和插值修正得数据分量特征参数,提取特征参数和稀疏表示向量非零系数二者中参数少的为数据分量最少特征信息;数据为Ⅱ型信号,数据非均匀采样点由算子Ξ组成部分元素被观测待恢复的低秩Hankel矩阵,采用矩阵填充恢复算法恢复矩阵,并经矩阵奇异值分解得非零奇异值为数据最少特征信息。然后,定义特征模式分组编码和模式特征向量映射规则,利用融合技术将异构最少特征信息进行融合,采用采样值传输协议进行报文封装,生成遵循IEC61850-9-2标准的采样最少特征值轻型协议数据进行网络传输,实现通信网络数据标准化、高度集成与共享。通过设置虚拟局域标识(VID),避免数据帧大范围广播传输,造成网络风暴和堵塞,节省网络资源,采用动态带宽分配(DBA)算法对网络带宽进行动态分配,优先保证高优先级报文传输的实时性,减少传输时延和抖动,实现各类报文传输得到合理的网络带宽。最后,介绍轻型协议数据传输到信宿端,执行与信源端生成轻型协议数据相反的操作,通过对轻型协议报文解封、特征解析,根据模式特征向量映射规则重构或恢复模式分量,并叠加快速准确还原原始海量数据。通过算例分析,验证了基于最少特征信息传输原理的智能电网海量数据轻型传输方法的准确性和有效性。
(4)基于OPNET网络仿真平台构建智能变电站通信网络模型,进行海量数据网络传输仿真实验,并对网络传输性能进行分析与评估,轻型传输可以有效减轻网络传输负荷,并降低传输延时。然后,对实验室搭建的轻型数据传输物理原型系统与传统数据传输系统进行对比模拟测试,轻型传输系统可以有效降低网络传输流量,传输数据压缩比随模拟采样频率增大而增大。网络仿真实验和物理原型系统动态模拟测试结果,均验证了本文提出的智能电网海量数据轻型化机制的可行性、可靠性及优越性。
论文最后对本文结论进行总结,并对未来研究工作进行展望。
(1)针对Ⅰ型信号(即数据含脉冲信号或振荡信号)提出一种采用压缩感知理论实现智能电网海量数据轻型采样的方法。电网发生扰动,基于事件触发机制对扰动发生前后一个观测时窗内数据进行在线录波,并完整采样记录,采用扰动检测方法精确定位扰动时间。然后,采用深度学习网络对数据进行快速模式识别,数据为Ⅰ型信号,数据各分量按照一定顺序选择强相关原子库进行稀疏分解,强相关原子库是根据数据分量的动态特性、数学模型构建的冗余原子库,可有效提升数据分量稀疏性,降低数据总稀疏度大小和优化测量矩阵规模,数据压缩采样数据量更少。为增强数据压缩采样实时性,通过设置内积常数以减少原子库子集的规模、采用智能算法加快原子匹配追踪、采用正交投影矩阵更新代替稀疏分解的最小二乘法避免多次求解逆矩阵等措施,降低数据分量稀疏分解的时间。最后,对脉冲数据分量采用信号共振稀疏分解(RBSSD)进行增强提取,对需监测的弱数据分量幅值进行增幅,并采用谐波滤除(HF)算法进行滤除,有效提高数据分量重构精度。通过算例分析,验证了对Ⅰ型信号进行压缩采样的精确性和有效性。
(2)针对Ⅱ型信号(即数据只含类基波信号、短期变动信号),提出一种采用低秩矩阵填充理论实现智能电网海量数据轻型采样的方法。采用深度学习网络对数据进行快速模式识别,数据为Ⅱ型信号,数据由算子Ξ组成Hankel矩阵,基于低秩Hankel矩阵对数据进行非均匀采样,减少数据采样量。首先,对信号数据组成Hankel矩阵的低秩性进行了严格数学证明,得出智能电网海量数据具有低秩性。数据非均匀采样点由算子Ξ组成部分元素被观测待恢复的Hankel矩阵,采用矩阵填充恢复算法恢复矩阵,对恢复矩阵副对角线元素求平均值恢复信号,恢复信号相对误差满足要求时,将数据非均匀采样点的位置形成位串uv,可用于快速确定观测时窗后数据的非均匀采样点。最后,针对采用随机采样矩阵确定数据非均匀采样点存在随机性、计算量大等缺点,采用斜率差绝对值(AVGD)方法可快速确定数据非均匀采样点,低秩矩阵填充还可利用数据周期性、对称性、奇偶性等特征,简化确定数据非均匀采样点的计算。通过算例分析,验证了对Ⅱ型信号采用基于低秩Hanel矩阵的非均匀采样方法的精确性和有效性。
(3)针对智能电网海量数据轻型传输,提出基于最少特征信息传输原理的智能电网海量数据轻型传输方法。数据为Ⅰ型信号,数据压缩测量值采用重构算法,对数据稀疏表示向量进行重构,稀疏表示向量经分析和插值修正得数据分量特征参数,提取特征参数和稀疏表示向量非零系数二者中参数少的为数据分量最少特征信息;数据为Ⅱ型信号,数据非均匀采样点由算子Ξ组成部分元素被观测待恢复的低秩Hankel矩阵,采用矩阵填充恢复算法恢复矩阵,并经矩阵奇异值分解得非零奇异值为数据最少特征信息。然后,定义特征模式分组编码和模式特征向量映射规则,利用融合技术将异构最少特征信息进行融合,采用采样值传输协议进行报文封装,生成遵循IEC61850-9-2标准的采样最少特征值轻型协议数据进行网络传输,实现通信网络数据标准化、高度集成与共享。通过设置虚拟局域标识(VID),避免数据帧大范围广播传输,造成网络风暴和堵塞,节省网络资源,采用动态带宽分配(DBA)算法对网络带宽进行动态分配,优先保证高优先级报文传输的实时性,减少传输时延和抖动,实现各类报文传输得到合理的网络带宽。最后,介绍轻型协议数据传输到信宿端,执行与信源端生成轻型协议数据相反的操作,通过对轻型协议报文解封、特征解析,根据模式特征向量映射规则重构或恢复模式分量,并叠加快速准确还原原始海量数据。通过算例分析,验证了基于最少特征信息传输原理的智能电网海量数据轻型传输方法的准确性和有效性。
(4)基于OPNET网络仿真平台构建智能变电站通信网络模型,进行海量数据网络传输仿真实验,并对网络传输性能进行分析与评估,轻型传输可以有效减轻网络传输负荷,并降低传输延时。然后,对实验室搭建的轻型数据传输物理原型系统与传统数据传输系统进行对比模拟测试,轻型传输系统可以有效降低网络传输流量,传输数据压缩比随模拟采样频率增大而增大。网络仿真实验和物理原型系统动态模拟测试结果,均验证了本文提出的智能电网海量数据轻型化机制的可行性、可靠性及优越性。
论文最后对本文结论进行总结,并对未来研究工作进行展望。