论文部分内容阅读
检修计划是电力设备检修时关于方式调整和停复电操作安排的电力文本,调度员日常对检修计划进行停复电的审批和执行是电网加强生产管理和确保电力系统安全稳定运行的一项重要业务流程。随着城市电网规模不断扩大,检修停复电的审批和执行在电网调控业务量中的占比日益增大。目前电力大数据时代已经来临,智能电网的建设不断推进,在调度员业务繁忙以及调控中心智能自动化水平亟待提高的背景下,本文应用人工智能技术研发机器人调度员系统,围绕机器自主高效地完成计划检修停复电的日前审批和日内执行任务这一调度智能化发展方向完成了以下工作:1)根据检修停复电的调控流程提出一种基于知识模型的模块化架构智能系统,智能实现检修计划单的解析、关联分析、方式安全校核以及调度命令票和操作序列的智能生成和执行,一体化完成检修停复电业务的日前审批和日内执行。说明了系统的架构、模块设计和业务逻辑。分析了系统利用Rabbit消息队列与外部软件平台通信,实现数据交互和基于事件驱动的控制决策流程。采用My SQL数据库存储系统的各类数据、知识和规则,应用自然语言理解技术将检修计划文本解析成结构化数据,利用Neo4j软件和图拓扑搜索技术实现检修计划相关设备信息和数据的智能搜索、检修计划的关联分组。2)结合本体论和谓词表达对检修计划停复电相关的调度领域内的各类信息和数据进行了灵活的知识表示,提出电网模型知识和任务知识两大类本体知识的划分方式和生成方法;依据调度员经验和相关操作管理规程,基于一阶谓词逻辑方法构建了以推理次日拓扑变位时间序列和调度命令票为目标的通用规则体系,保证系统良好的通用性和扩展性。3)通过Python第三方模块NLTK的内置算法开发了利用本体知识和规则匹配的知识推理机制,在此基础上研究了次日拓扑变位时间序列和调度命令票的推理方法。提出检修计划关联分组的分析方法,进一步根据拓扑变位序列设计分组下检修计划运行方式的智能校核过程。利用命令票生成过程的相关结论,给出了通过查询结构表生成详细操作序列票的方法。通过算例验证了系统的智能性、有效性和通用性。在Py Charm软件开发环境中完成了检修停复电智能审批和执行系统的开发。系统的运行安全可靠,能够极大降低调度员的工作强度,提高审批和执行检修计划停复电的工作效率,闭环自动化完成相关调控业务。