论文部分内容阅读
污水生化处理过程机理复杂,具有强耦合性、非线性、时变性等特征,智能化算法的引入能有力推动污水处理研究的发展。免疫算法是基于生物免疫机理而建立起来的用于解决各种复杂问题的智能化算法,已经广泛应用在故障诊断、优化计算、智能控制等领域中。但是,免疫算法的理论和应用研究还有较大的空间,在污水处理系统中的应用研究还很少。本文在总结前人工作的基础上,对免疫算法的理论进行了深入的研究和改进,并将其应用于污水处理系统的异常数据检测、出水水质预测、模型参数估计、解耦控制及最优控制中。本文的主要研究内容概括如下:1.为了获得高品质的污水处理数据,采用改进的实值负向选择算法对采集到的数据进行检测,剔除异常数据。该算法通过采用可变尺寸检测器,同时限制检测器的最小半径来提高算法的性能。通过对时间序列信号进行检测,验证了改进算法的有效性。将改进的实值负向选择算法应用于污水处理系统异常数据检测中,仿真结果表明,该算法提高了污水异常数据的检测精度。2.为了提高污水处理系统出水水质的预测精度,根据某污水处理厂工艺流程及进水水质特点,分析了影响出水水质的主要因素。污水处理系统是一个多输入多输出系统,而传统的支持向量回归机(SVRM)算法只适用于单输出系统,若采用构造一系列单输出SVRM模型的方法,由于输出变量之间的关联性,增加了算法复杂性且精度较差。为了解决多输出系统预测问题,提出了一种多输出最小二乘支持向量回归机(LS-SVRM)算法。采用多输出LS-SVRM进行污水处理系统出水水质预测,并应用免疫算法来优化多输出LS-SVRM的参数。仿真结果表明,所提出的方法提高了污水处理系统出水水质的预测精度。3.针对污水处理系统活性污泥模型参数不确定,以及应用于不同环境的模型参数并不能取同样参数值的问题,提出了一种基于改进免疫算法的模型参数估计方法。在改进的免疫算法中,根据生物免疫机制及生物进化的周期性,设计了一种周期变化变异算子,提高了算法的搜索效率。同时,将抗体浓度与亲和度矢量距离相结合作为评价指标,设计了一种改进的免疫选择算子,避免了仅仅以亲和度作为免疫选择评价标准,低亲和度抗体过度抑制的缺点。基于马尔科夫链分析了改进免疫算法的收敛性,并通过测试函数验证了该算法的有效性。将改进的免疫算法应用到活性污泥模型参数估计中,仿真结果表明,该方法提高了模型参数的估计精度。4.针对氨氮浓度和硝态氮浓度之间相互耦合,以及常规的PID控制方法难以获得满意控制效果的特点,以溶解氧浓度和内循环流量为操作变量,采用PID神经网络(PIDNN)对氨氮浓度和硝态氮浓度进行解耦控制。针对PIDNN连接权值容易陷入局部最优值,应用免疫算法优化PIDNN连接权值,并对解耦控制系统的稳定条件进行了分析。免疫算法采用抗体浓度与亲和度矢量距离相结合的免疫选择算子,提高算法寻找PIDNN连接权值最优值的能力。仿真所需的化学计量系数和动力学参数采用活性污泥模型参数估计值,仿真结果表明,该方法对污水生化处理系统具有很好的解耦能力和控制品质。5.针对污水处理过程运行费用最优控制问题,以污泥排放量和溶解氧浓度作为控制变量,以剩余污泥处理、污泥回流与供气三者的运行费用之和作为性能指标,以有机物排放总量和出水水质作为约束条件,提出了一种新型免疫算法求解污水处理过程运行费用的最优值。新型免疫算法将变尺度方法引入到高斯变异和柯西变异中,设计了一种变尺度混合变异算子,提高了算法的搜索效率,并对该算法的收敛性、稳定性和时间复杂度进行了分析。将新型免疫算法与基本免疫算法和遗传算法进行比较,仿真结果表明,新型免疫算法的收敛速度最快,搜索到的运行费用最优值的次数最多,运行费用平均值和方差最小。