论文部分内容阅读
随着技术的发展,许多领域都需要快速准确地获取物体的三维空间信息,进行三维重建,而三维重建一般需要先进行三维信息获取,三维扫描是一种重要的三维信息获取方式,它是一个复杂的系统,涉及机械、光学、电子、控制、数字图像处理、计算机图形学、计算机视觉、软件工程等多个学科的内容。论文对三维信息获取技术的历史、现状、进展、应用等作了介绍;对三维信息获取技术中的定标问题及图形包含算法进行了研究。第一,研究了定标方面的问题。三维系统根据摄像机获取的图像信息,计算三维空间中物体的几何信息,由此重建和识别物体。而空间物体表面某点的三维几何位置与其在图像中对应点之间的相互关系是由摄像机成像的几何模型决定的,这些几何模型参数称为摄像机参数,可以分为内部参数和外部参数;摄像机内部参数是指摄像机成像的基本参数,如主点、焦距、镜头畸变参数。摄像机的外部参数是指摄像机成像时的空间参数,如摄像机的空间坐标和方位。在大多数情况下,这些参数必须通过实验与计算才能得到,这个过程称为定标。在传统摄影测量定标方法中,需要制作定标模块,其上布置一些控制点,准确测定它们的三维坐标。为保证定标精度,这些控制点应该在三维空间均匀分布,对定标块的制作和加工要求很高。本文提出采用平面定标板沿法线方向平行移动的方式代替三维定标模块,既能达到三维效果,显著增加控制点数量,也使制作简单。将传统摄影测量定标和神经网络方法相结合,采用基于神经网络的定标方法,用5步法计算定标参数和待求点的物方坐标。第二,研究了参数修正与偏心修正问题。定标参数在应用的过程中,需要对其进行修正;因为当系统使用一段时间后,系统的某些部分可能发生变化,参数将会产生漂移,需要重新定标或进行修正,本文研究了修正的方法。对于旋转式扫描仪,其扫描值归算至中心时,需要偏心修正,研究了偏心修正的算法。第三,研究了点、线、多边形的包含关系计算问题,如:点-多边形包含关系、线-多边形包含关系、多边形-多边形包含关系。在课题组提出的三维信息获取方法“残余图法”中,需要进行点、线、多边形包含关系的检测;在计算机图形学、地理信息学等领域,也需要进行有关点、线、多边形关系的计算处理。点-多边形关系计算是一个基本而又重要的问题,点的位置判断正确与否会直接影响到后续的处理结果。提出了动态射线与向量积两种算法。向量积算法是从检测点发出一条射线,从检测点向与射线产生交点的边的两端点作两个向量,对这两个向量计算向量积,对向量积的正反方向次数进行计数,根据计数结果判断检测点是否位于多边形内。该算法无需特殊情况的处理,判断简单,只需简单加减乘运算、稳定可靠,检测速度快。线与多边形包含检测:如果直线与多边形有交点,则求出所有交点坐标,这些交点将线分成为多段,判断各段的中点是否位于多边形内,如果某段的中点位于多边形内,则此段位于多边形内。两个多边形包含关系的检测,提出的算法是先将两多边形以同一方向顺序进行顶点编号,对多边形的每边求交点,这些交点将多边形的边分为多段,提取互相包含的各段,对这些段进行首尾连接检测,能够首尾连接闭合的段组成两多边形的交集,即公共多边形。