论文部分内容阅读
在微电子表面组装技术(SMT)中,印制板组件(PCBA)的密度随着元器件的不断微型化变得越来越高。对PCBA进行质量检测,传统的人工目检已经不能适应其高密度、微型化的发展需求。而先进的视觉检测技术因具有快速、非接触、高精度等优点,恰好能够满足这一发展需求,在SMT生产线中具有广泛的应用与发展前景。本文基于虚拟仪器技术,以NI公司的创新产品LabVIEW为开发平台,结合其视觉开发工具IMAQ Vision进行了PCBA智能视觉检测技术的研究与系统开发,提高了开发效率、缩短了开发周期、降低了开发成本。首先,研究了基于虚拟仪器的计算机视觉检测系统的构成,并设计了详细的PCBA视觉检测系统实施方案。为了应对SMT生产线对检测速度的极高要求,文中基于区域分割的思想提出了一种多通道视觉检测方法。实验证实,在同等条件下的系统检测速度获得了极大提高。其次,针对PCBA图像的固有特点,重点对PCBA图像的增强方法、形态学处理、分割算法进行了分析和研究,提出了基于灰度值的数学统计规律的自动阈值分割算法,为提高PCBA视觉检测系统的检测速度和自动化程度奠定了基础。然后对PCBA的缺陷进行了分类,并对不同缺陷类型的视觉识别方法进行了研究。最后基于分区域搜索的方法分别对不同的缺陷类型进行识别,获得了较好的识别效果。再次,对PCBA智能视觉评估的可行性进行了研究,并针对计算机视觉在PCBA质量检测中的高级智能化应用进行了探讨。同时通过研究产品外观检测标准和前人的相关研究成果,采用离线分析与在线检测相结合的手段,引入了焊点形态与焊点可靠性关系的相关理论,并在此基础上提出了一种具有智能分析功能的新型智能光学检测分析(IOIA)方法,成功地解决了用视觉方法对焊点进行可靠性分析评估的可行性问题和寿命预测的在线实时性问题,为PCBA视觉检测系统的智能化发展铺平了道路。最后,本文基于LabVIEW开发平台和IMAQ Vision工具成功开发出了PCBA智能视觉检测系统原型,并通过实验证实了系统的快速性和可靠性。通过与目前市面上同类AOI检测系统参数的比较得知,由于本系统优化了快速自动阈值分割算法并采用了分区域搜索和多通道检测技术,使得检测速度获得了大幅提高。随着通道数的增多,多通道系统的检测速度将会成倍提高。