参与式感知环境下时空众包的隐私保护机制研究

来源 :烟台大学 | 被引量 : 0次 | 上传用户:bangxiaosg
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着5G技术的普及以及工业5.0的到来,给网络科学提供了新的发展机遇和挑战,“众包”也成为了驱动网络科学理论与工程发展的新动力。时空众包可提高人群执行涉及与物理位置相关的现实世界场景任务的潜力,它的主要特征是空间任务的存在,要求工作人员在特定时间内出现在特定位置以完成任务。然而,在时空众包系统的感知过程以及感知信息传输过程中,由于感知信息的时空敏感性和网络信道的不安全性,参与者往往面临隐私泄露的风险。因此,在时空众包系统中,保护参与者的隐私信息尤为重要,基于时空众包的隐私保护技术也成为互联网隐私保护领域的研究热点。
  时空众包的隐私保护方法主要分为基于时空信息的隐私保护方法和基于密码学的通信安全方法。本文针对上述两部分内容,解决以往研究方法的难点和不足,分别设计基于k-匿名和l-多样性动态发布隐私保护机制,以及基于轻量级加密方法隐私保护机制。具体研究内容包括以下两点:
  1.现阶段数据发布方法大多考虑静态发布,容易造成算法的时间复杂度高,时效性差等问题。本文结合动态聚类思想,降低算法的时间复杂度,提高动态发布的时效性。大部分研究者只是匿名化参与者的位置信息,并没有考虑到攻击者也可以根据参与者的时间信息推测出其他隐私信息。本文同时匿名化参与者的位置属性和时间属性,有效避免针对位置属性的背景知识攻击和同质攻击。
  2.现有研究时空众包隐私保护方法往往通过某种方式在本地保护参与者的隐私信息,而没有考虑在网络传输过程中的安全性问题。本文采取参与者端加密和请求者端解密的方法在感知信息传输过程中对其进行保护。此外,资源受限的参与者由于有限的存储能力,计算能力和电池容量,往往很难执行计算成本高的加密算法,因此传统的数据加密方法无法很好地应用在资源受限的参与者上。本文采用轻量级流密码算法进行数据加密,并利用混沌映射和积代数对其进行改进,提高密钥流的随机性和周期性。
其他文献
心电图(Electrocardiogram,ECG)是诊断心脏疾病安全有效且快捷的方法,同时ECG是用于心脏疾病检测、分类和治疗的重要指标。因此,高效准确地去除ECG中的噪声对心脏疾病的辅助诊疗有着重要意义。在此背景下,本文将结合心电信号的稀疏特性,采用神经网络方法深入研究心电信号的降噪问题。本文主要的创新点将从以下三方面展现。(1)针对传统的基于滤波器的降噪方法对信号的适用性不强的问题,本文提出
学位
据统计,我国已建成全球规模最大的供暖管网。通常管道经过闲置可能出现老化、锈蚀,导致管口渗水。供暖面积的增加,对管道检修带来挑战。针对供热管道来说,依赖管道机器人的检测方法,只能工作于非供暖时段,在供暖季节无法运行。红外无损检测通过采集并将红外线辐射转换为二维图像的方式,不触碰和破坏被测物体,通过红外图像直观反映物体的温度分布情况。本文以红外无损检测技术为基础,结合成熟的无人机技术,使用数字图像处理
学位
随着智能制造工业领域的飞速发展,设备发生故障的现象无法避免,同时也带来了巨大的经济损失,因此对工业设备故障进行快速而准确的判断具有重大意义。由于工业设备多数故障信息具有模糊性且故障源的判断易受多种因素的影响,而具有灵活转换特点的三角模糊数可对故障信息进行准确描述,它相应的决策方法也可对故障诊断问题进行全面分析,故面向故障诊断的三角模糊数决策方法是一个值得探索的研究方向,且具有较强的应用性。本文主要
学位
心脏病始终是人类健康的“头号杀手”。心电信号反映了心脏的收缩和舒张,是分析人体健康状况的重要依据。近年来涌现了大量利用人工智能技术来分析心电信号的研究,用于辅助心脏病的诊断。这在一定程度上为医疗工作者减轻了工作压力,提升了工作效率。然而,心脏病患者的情况是十分复杂的,特别是在突发紧急情况下,单纯的心电信号分析研究不能满足患者实时心率监测的需求。为此,应用边缘智能技术实时监测患者的心率情况成为一种新
学位
大数据时代,推荐系统在对抗信息过载问题上起到了重要作用。传统的协同过滤推荐算法仅利用交互信息进行建模,由于可供模型训练的数据种类单一、信息不足,可能导致推荐效果不佳,因此,许多工作将文本作为辅助信息引入到推荐模型中以提供额外的数据输入。但是,现有的基于文本的推荐方法往往忽略了用户的多样性偏好(用户的偏好特征会随着面对的项目不同而改变),或是没有在建模过程中充分利用输入的文本信息。针对上述问题,本文
学位
基于效用的序列规则挖掘能够挖掘出效用价值高的序列规则,被广泛的应用于金融、生物医学、制造业、电子商务、社交媒体等领域。与高效用正序列规则挖掘相比,高效用负序列规则挖掘还考虑了未发生事件,能提供更加全面的决策信息。目前的高效用正序列规则挖掘方法并不能直接用于高效用负序列规则挖掘,因高效用负序列规则挖掘过程中存在很多内在复杂性问题:(1)如何定义高效用负序列规则挖掘的问题。(2)如何计算高效用负序列规
学位
暗网构建在公共网络之上,需要特殊的软件、配置或者认证才能访问,相对传统的互联网网络,暗网具有匿名性强、溯源难、动态性高等特点。暗网建立的初期目的是保护互联网用户的通信隐私,但现在的暗网中存在着大量违反法律的信息,不法分子在暗网中从事非法活动,暗网已经严重威胁了网络空间安全。暗网之所以对网络空间安全构成一大威胁,很大原因是因为它难以实现追踪溯源,能够实现对暗网的追踪溯源,将可以对暗网中的非法行为起到
学位
偏好学习是通过矩阵分解得到潜在特征,广泛应用于数据挖掘和机器学习领域。对于没有任何负项的数据集,非负矩阵分解(Non-negative Matrix Factorization,NMF)将两个非负矩阵相乘来寻找低秩近似。近年来也提出了许多正则化的NMF,但是,仍然存在一些问题:一是由于一些数据中存在噪声和异常值,传统的方法容易产生误差较大的目标函数;二是在加入图正则约束时,计算相似度矩阵邻居关系都
联盟形成是多Agent系统中的重要研究课题,多个不同的Agent联合在一起,可以实现个人无法单独实现的目标,或者取得更优的效用。联盟结构生成问题是其中的关键挑战之一,目的是寻找最优联盟结构以最大限度地提高个体利益和联盟收益。目前,寻找最优的联盟结构是困难的。一方面,大多数联盟形成模型假设任意Agent都能够形成联盟。这种假设过于宽泛,在现实生活中,联盟的形成过程常常需要考虑现实存在的各种约束,但即使添加约束条件,问题的复杂度仍然较高,需要新的、快速有效的算法解决大规模现实
学位
现实生活中有许多复杂的网络系统,例如社交网络、生物分子网络和互联网等,利用网络结构建模这些复杂系统的研究已为社会提供了诸多创新应用。网络表征学习(又称网络嵌入)是将网络的节点表征为低维连续空间中的向量,且同时保留网络结构及其固有属性的一种有效方法,推动了下游网络数据挖掘任务的重大进展,近年来受到了学术界和工业界的极大关注,工业界已将网络表征学习技术纳入了下一代网络分析平台的基础性架构。本硕士论文围