K4169合金电子束焊接液化裂纹产生机制及控制研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:ganggang821010
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
K4169高温合金是一种沉淀强化型Ni-Cr-Fe基铸造高温合金,在中高温下具有较高的强度、塑性、优良的耐热腐蚀性、耐辐照性等性能,被广泛用于航天航空发动机的涡轮盘、机匣等结构件。但是K4169合金在焊接时热影响区极易产生液化裂纹。本文对不同焊前热处理状态下K4169合金电子束焊接头热影响区液化裂纹的敏感性和产生机制进行了研究,通过焊前热处理和优化焊接工艺对接头热影响区液化裂纹进行控制,同时对不同焊前热处理接头的组织和力学性能进行了研究。对铸态的K4169合金进行了电子束焊接,焊缝表面成形较好,但是在热影响区有液化裂纹产生,且主要集中在热影响区颈部位置。接头热影响区液膜主要来源于Laves相的组分液化,且在冷却过程中形成γ/Laves共晶组织,同时在热影响区还存在液膜迁移现象,液膜迁移对液化裂纹的产生具有抑制作用。对接头进行室温拉伸测试,焊态接头室温拉伸断裂在母材上,且断裂方式为韧性穿晶断裂,强度与母材相当,说明少量的液化裂纹并不影响接头的室温拉伸强度。焊前热处理对K4169合金电子束焊接头液化裂纹敏感性的影响研究表明,通过焊前热等静压热处理可以消除基体中的Laves相,虽然这可以避免Laves相液化带来的液化裂纹问题,但是随着焊前热处理Laves相向基体溶解,向基体释放Nb、Mo、Si等元素,且S、P、B等元素在热处理和焊接热循环过程中向晶界偏析,使得晶界处基体固相线降低和液膜对晶界的润湿性增加,热影响区晶界在焊接热循环中发生偏析液化,同样产生较大的液化裂纹倾向;焊前母材力学性能对裂纹敏感性影响较大,通过焊前热处理降低母材强度和提高其塑性,能很好地释缓接头焊接应力,降低接头的裂纹敏感性。焊接热输入对K4169合金电子束焊接头液化裂纹敏感性的影响研究表明,焊接热输入在0.136~0.244 J·mm-1范围内,随着焊接热输入的升高(焊接速度的降低),液化裂纹敏感性呈现先增大后降低的趋势,说明高速焊接带来的焊接应力的升高和慢速焊接带来的PMZ宽度增加,均不会引起液化裂纹敏感性的显著增加,只有当晶间液膜和焊接应力在一定范围内的共同作用才会诱发较高的裂纹敏感性,同时采用较高的焊接热输入能够通过降低焊接应力和促进液膜迁移而显著降低接头液化裂纹敏感性。
其他文献
自1991年搅拌摩擦焊发明以来,就得到了社会各界的广泛关注,相比于熔焊,搅拌摩擦焊的固相连接避免了大多焊接缺陷,是一种绿色无污染的连接方法。搅拌摩擦焊的过程中,搅拌头直接与被焊金属接触,承受较高的温度及较大的应力循环,搅拌头是搅拌摩擦焊技术的关键。搅拌头的脆性断裂是FSW过程中常遇到的现象,21世纪初期就有诸多学者通过理论计算FSW过程中的受力对搅拌头进行分析,从而辅助搅拌头的设计工作;亦有学者通
本文采用约束时效来调控富Ni的Ni-Ti-Hf合金的组织结构,并改善其相变行为和应变恢复特性。采用示差扫描量热仪、X射线衍射仪、透射电子显微镜、动态热机械分析仪等手段系统地分析约束时效对Ni-Ti-Hf合金相变行为、显微组织结构以及形状记忆性能的影响规律。研究表明,约束时效会导致Ni-Ti-Hf合金中析出H相,随着约束温度的升高或者约束时间的延长,H相尺寸变大,由颗粒状逐渐长大为椭球状;且数量增多
本文通过均匀化热处理、高温挤压变形、以及添加微量Mn元素实现了对高合金含量的Mg-17Al-8Ca合金初生相的形貌和种类的调控,通过均匀化热处理和高温挤压变形改善了高合金含量Mg-17Al-8Ca合金的力学性能,制备出成本低、性能优异且阻燃效果良好的高合金含量的Mg-17Al-8Ca合金。研究了均匀化热处理工艺、挤压温度和Mn元素含量对合金中第二相的种类、数量和尺寸的影响规律,以及Al含量对高合金
微结构表面往往具有某些特殊功能,例如改变工件的光学、热学或力学特性。在机械领域,具有柱面的杆件或轴件经常被使用,如内燃机活塞杆、阀门阀芯等,微结构表面的叠加使其获得了减阻减磨等功能。因此近年来,在此类柱面零件表面上制备微结构表面受到了越来越多的关注。利用表面具有微米级宏观结构的砂轮进行纹理磨削是制造微结构表面的一种高效方法,但砂轮磨损极大限制了其实际应用。CVD金刚石砂轮作为一种新型的磨削工具,具
Zr-4合金由于具有较低的热中子吸收截面、良好的力学性能和加工性能以及在高温高压水和蒸汽中优异的耐腐蚀性能等特点,被广泛用于水冷核反应堆。目前常用的连接方法通常通过较大的热输入来实现Zr-4合金的焊接,常使得母材晶粒长大而性能下降或变形难以满足精度要求,因此实现Zr-4合金的低温连接尤为关键,低温扩散连接能在较低的连接温度下得到强度相对理想的接头。本课题首先采用电解置氢及表面机械研磨的方法制备了表
金属橡胶材料早期主要用于机械、航天等领域,在土木工程方面的应用研究尚处于初步阶段,且目前针对金属橡胶的理论和试验研究仍以小丝径、小体积试件为主,实际出力和耗能均较小,不能满足土木工程等大型结构的使用条件。此外,近年来随着智能建造和智慧土木工程结构的兴起,功能性结构材料得到了高度的重视和快速发展。金属橡胶材料由金属丝线匝编织、冲压成型,属于多孔金属材料,具备良好的导电性能。在加载过程中金属橡胶材料的
人类对资源的消耗需求在日益增加。目前人类将资源勘探的目光转向了海洋。海洋立管作为油气开采中重要的结构,承担着连接、运输的作用,由于传统金属立管不再能满足深海勘探的需求,复合材料由于其质量轻、耐腐蚀、耐疲劳、高比强度、高比刚度等优点,被应用到海洋立管结构中。但因为复合材料自身生产时会有缺陷,在复杂的工作环境中,很容易发生损伤破坏,不仅会带来经济损失,甚至会对环境造成严重的污染。作为各向异性材料,复合
随着多场辅助电火花加工技术的发展,超声辅助电火花加工在微小孔加工领域得到了广泛的应用。其具体方法是对电极施加超声运动使得电极对孔内工作液产生高频搅动效果以提高孔内工作液流速。与传统电极做旋转运动相比,超声辅助电火花微小孔加工具有加工效率快、表面质量高、电极损耗小等优点,但是随着加工的进行,不断累积的电极损耗仍然会导致微小孔的尺寸和形状精度下降。因此,定量分析超声辅助电火花微小孔加工的电极损耗规律,
深部软岩巷道中,钢管混凝土支架常作为支护结构被采用。钢管混凝土支架通常由多段钢管混凝土圆弧拱制成,而该类钢管混凝土圆弧拱的研究明显滞后于其应用,其中圆弧拱的承载能力一直不能精确计算,也不能揭示一般的工作规律,更不清楚其应用的保守程度。针对这一问题,本文基于结构受力状态理论,通过对应变数据建模,分析了钢管混凝土圆弧拱的受力状态特征,揭示钢管混凝土圆弧拱的一般工作规律,为精确预测拱承载力提供依据:(1
FeSiAl软磁粉芯广泛应用在变压器线圈、谐振电感以及电机磁芯中。随5G高频时代的到来,电子电力领域对软磁材料的需求日益增长,但其较高的磁损耗尤其是涡流损耗严重限制了其在高频领域中的应用。本综述从工程技术的角度出发,以FeSiAl为主要对象,介绍了其扁平化技术和表面绝缘层包覆技术的最新进展,并重点对绝缘包覆层的形成机制、组织结构和外观形貌变化以及高频场下复合磁粉芯的特性进行归纳总结。FeSiAl扁