论文部分内容阅读
本文以γ-氨丙基三乙氧基硅烷为偶联剂成功制备了苯丙氨酸取代杯[4]芳烃键合柱。相比较于裸柱而言,该键合柱的电渗流较低,稳定且具有独特的分离性能。据此文中将其用于食品中多种有害小分子物质的快速、有效、痕量分析。1、以实验室自主合成的苯丙氨酸取代杯[4]芳烃为固定相材料,在KH-550偶联剂作用下,成功制备了苯丙氨酸取代杯[4]芳烃键合毛细管柱(mPHE-Cx4),并对其进行了红外和电渗流的表征,同时将其表征结果与裸柱和KH-550修饰柱相比较。除此之外,还以邻苯二酚和间苯二酚为靶向物质,考察了该键合毛细管柱的电泳行为,凸显了其对位置异构体的特有选择性和识别功能。2、采用]mPHE-Cx4为电泳分析柱,10mmol/L硼砂-10%乙腈(pH,8.60)为背景电解质,比较讨论了苯甲酸在正压和负压两种模式下的开管电色谱分析,除此之外还初步研究了场放大进样在线富集技术在苯甲酸痕量测定中的应用,并详细考察了场放大进样的最优条件,即:50mabrxlOs水柱长度;-25kV×20s进样量。相比较而言,加入电渗流反转试剂后所采用的负压模式不仅有效的缩短了物质出峰时间,且在一定程度上提高了物质的检测灵敏度;而在负压模式下采用场放大技术后则更进一步提高了苯甲酸的检测灵敏度,其检出限为0.01μg/mL,为苯甲酸的痕量分析做出了初步的探究和考察,并将其成功的用于实际样品酱油和醋中苯甲酸的测定分析.3、采用mPHE-Cx4为分析柱,分别建立了溴酸根离子的开管电色谱分析法和场放大进样开管电色谱法,成功用于面粉和自来水中溴酸根离子的测定分析,并对两种分析方法进行了比较。前者最优化电泳条件为:50mbar×5s进样量,5mmol/L磷酸盐-0.3mmol/L CTAB(磷酸调节,pH,7.20)为背景电解质,分离电压为-15kV;后者最佳条件为:水柱长为50mbar×8s;进样量为-15kV×16s。结果显示场放大进样开管电色谱法最低检出限为0.006μg/mL,提高近1000倍,成功的实现了溴酸根离子的痕量分析测定,为溴酸根离子的快速,准确的痕量测定分析提供了新的分析方法和手段。