论文部分内容阅读
目前,我国工业发展迅速,在推动经济迅速发展的同时,一系列环境污染问题也随之产生,影响着人们的生活环境和身心健康,尤其以水污染问题较为严重。制浆造纸工业是一个与经济发展和日常生活息息相关的重要产业,更是用水大户,是水源污染的重要来源之一。我国造纸工业废水排放量大,占我国工业污水排放量的20-30%。而造纸废水污染物成分复杂,主要含有细小纤维素、木质素、有机物、酯类等污染物,属于较难处理的工业废水,若未达标排放,将会对自然水体造成较大危害。目前,造纸企业主流使用聚丙烯酰胺类絮凝剂(PAM)絮凝处理造纸废水,但其存在电荷属性单一、难生物降解进而引发二次污染等问题,因此使用受到限制。壳聚糖与纤维素属于天然高分子材料,其来源广泛、价格低廉、生物相容性好,分子链中含有大量的羟基,易进行改性。因此,本课题以纤维素与壳聚糖为原材料,制备了竣甲基纤维素(CMC)和季铵化壳聚糖(HTCC);以戊二醛作为交联剂,采用一步合成的方法,制备了一种可生物降解的纤维素-壳聚糖两性絮凝材料(HTCC-g-CMC)。探究了HTCC-g-CMC对高岭土悬浊液和造纸废水的絮凝性能和生物降解性,并对其絮凝机理进行了初步探究,开展主要工作如下:1.羧甲基纤维素、季铵化壳聚糖制备及其结构表征以纤维素、壳聚糖为原材料,制备了 HTCC和CMC,通过设计正交实验优化HTCC和CMC的制备工艺,得出HTCC最佳制备工艺条件为:CTA用量10 mL,NaOH用量20 mL,反应温度90℃,反应时间8h;CMC最佳制备工艺条件为:NaOH用量1.4g,氯乙酸用量4.3 mL,反应温度80℃,反应时间60 min;通过红外、SEM和BET对产品进行表征,结果表明HTCC和CMC制备成功,表面吸附位点增加;通过XRD和热重分析可得,改性后的纤维素与壳聚糖结晶度降低,进而导致HTCC和CMC的热稳定性较改性前降低。2.纤维素-壳聚糖两性絮凝材料制备及其结构表征将最优条件下制备的HTCC和CMC以戊二醛为交联剂,按照1:1的比例来制备纤维素-壳聚糖两性絮凝材料;通过正交实验得出HTCC-g-CMC最佳制备工艺条件:戊二醛用量为0.35 g,pH为5,反应温度50℃,反应时间3 h;红外表征表明HTCC-g-CMC同时具有正电性季铵基团和负电性羧基,Zeta电位测定结果表明HTCC-g-CMC在酸性和碱性条件下可分别表现出不同的带电属性,说明HTCC与CMC通过缩醛反应成功接枝,得到HTCC-g-CMC产品;HTCC-g-CMC经过80天的降解,降解率达到93.7%,降解后的HTCC-g-CMC表面粗糙,出现较多孔径,说明产品HTCC-g-CMC具有较好的生物降解性。3.纤维素-壳聚糖两性絮凝材料絮凝性能评价将最优条件下制备的HTCC-g-CMC产品对高岭土悬浊液和造纸废水进行絮凝处理,探究了 HTCC-g-CMC絮凝造纸废水的絮凝机理;通过正交实验,HTCC-g-CMC絮凝高岭土悬浊液在酸性条件下最佳絮凝工艺为:pH为2,助凝剂用量为0 mL,絮凝剂用量为10 mL,搅拌时间为6 min;在碱性条件下最佳絮凝工艺为:pH为12,助凝剂用量为2 mL,絮凝剂用量为6 mL,搅拌时间为4 min,通过3次平行实验,其在酸性和碱性条件下平均浊度去除率分别为90.4%和98.9%;HTCC-g-CMC絮凝实际造纸废水,絮凝过程以粘结架桥为主要絮凝机理,造纸废水浊度和CODCr去除率分别达到90.3%和67.2%,与商业PAM絮凝效果基本相当,可考虑将其用于造纸废水的絮凝沉淀工段。