论文部分内容阅读
梯级水电站群是一个复杂非线性巨系统,由于其自身所具有的高维度、多目标、非线性、强耦合、不确定等内在特性,以及约束条件的复杂相关性,其联合优化调度一直以来是学术和工程界研究的前沿和热点问题。并且随着流域梯级水电能源的持续开发,水电站群的规模不断增加,流域上下游和跨流域电站间的水力、电力耦合与作用关系凸显,问题的复杂性与求解方法的局限性之间的矛盾更加突出。传统的优化调度与决策方法局限于孤立电站、单一目标、刚性决策,已不能满足梯级水电系统实际运行管理的需要,亟待发展新的优化理论与决策方法,增强实际问题的求解能力。为此,本文针对梯级水电系统自身特点,引入复杂系统工程理论、群体智能优化技术以及多目标决策理论,对流域梯级联合优化调度及其决策的理论与方法进行了深入研究,取得了一些具有理论意义和实用价值的成果,部分研究成果成功应用于三峡梯调工程实践。主要研究工作及创新成果如下:(1)针对含有梯级水电站群的水火电优化系统的复杂动力特性,提出一种新的适合于该问题求解的群体智能算法-混合粒子群算法(SPSO)。该算法在克服粒子群算法收敛速度慢、易陷入局部极值缺陷的同时,具有比粒子群算法和混合蛙跳算法更高的优化精度。将该算法应用于水火电系统短期优化调度实例,构建了基于双适应度约束处理方式的SPSO优化求解方法。计算结果表明,SPSO算法在求解该类问题时体现出良好的优化性能,双适应度约束处理方式能够有效的处理复杂系统约束条件,使计算结果快速稳定地收敛到可行空间,为复杂水火电力系统优化问题的求解提供了一种有效手段。(2)为求解梯级水电系统多目标优化问题,对SPSO算法进一步拓展,提出了多目标混合粒子群算法(MOSPSO),其核心内容包括基于自适应小生境方法的精英集维护策略以及基于Pareto支配关系的群体排序方式和个体进化过程。典型测试函数的优化结果表明,MOSPSO算法能够很好的处理各种不同特性的复杂多目标优化问题,在解的收敛性和多样性方面与多种代表性多目标进化算法相比具有明显优势。(3)针对三峡梯级水利枢纽建成后多目标联合调度的新要求,建立了基于MOSPSO算法的三峡梯级多目标发电及防洪调度优化模型,提出了适应于模型求解的编码方式以及约束廊道与罚函数相结合的约束条件处理方法,提高了复杂约束的处理能力和模型的收敛效率。通过不同典型来水条件下的多目标优化计算,揭示出调度目标间的相互影响规律,同时备选方案集也为三峡梯级联合调度提供了可靠的决策依据。(4)科学、准确的确定最佳调度方案是多目标调度的最终目的。结合熵权法确定多目标权重的客观性和Vague集理论描述模糊信息的准确性,提出一种新的基于改进熵权的Vague集多目标决策方法。该方法克服了熵权法确定指标客观权重时存在的缺陷,同时,备选方案相对理想方案的Vague值描述有助于对其优劣程度进行更为准确的刻画。进一步,以该方法作为数学工具进行了三峡梯级多目标发电及防洪风险决策分析,获得了不同利益趋势和风险偏好下的最佳发电及防洪调度方案,揭示了梯级电站间水力、电力内在耦合关系,优选方案及分析结果有助于三峡梯级联合调度的快速科学决断。