【摘 要】
:
交通流速度预测是通过特定方法分析出历史交通流中具有概括性的交通模式,从而自动生成未来交通流速度的过程。准确的交通流速度预测能为管理部门提供合理的决策依据,为驾驶员提供实时的道路状况预警,是交通领域至关重要的问题。交通流数据属于典型的时空数据,因此基于时空特性的预测成为了当前的研究热点。在实际场景中,交通流数据在固定路网的约束和交通事故等外部因素的影响下,具有整体稳定、动态波动的时空特性,给交通流速
论文部分内容阅读
交通流速度预测是通过特定方法分析出历史交通流中具有概括性的交通模式,从而自动生成未来交通流速度的过程。准确的交通流速度预测能为管理部门提供合理的决策依据,为驾驶员提供实时的道路状况预警,是交通领域至关重要的问题。交通流数据属于典型的时空数据,因此基于时空特性的预测成为了当前的研究热点。在实际场景中,交通流数据在固定路网的约束和交通事故等外部因素的影响下,具有整体稳定、动态波动的时空特性,给交通流速度预测带来了巨大的挑战。然而,现有的方法在如何对交通流的动态时空特性进行特征表示、如何刻画各检测点间动态的空间相关性和各时刻间动态的时间相关性等方面仍然存在不足,制约了预测结果的准确性。综合考虑上述问题,本文研究了面向动态时空相关性的交通流速度预测方法,主要研究内容包括:(1)对当前较为流行的交通流预测模型进行了调研和实验,分析了不同时间和空间特征提取方法对预测结果的影响。实验结果表明:在时间维度,基于空洞因果卷积的预测模型能够获得更为准确的预测结果;在空间维度,考虑空间相关性的动态性和有向性能够大幅降低预测误差。因此本文选取空洞因果卷积作为时间特征提取方法,同时考虑动态且有向的空间相关性,为后续研究提供基础。(2)针对交通流的整体稳定、微观动态的时空特性,提出了一种面向动态空间相关性的速度预测模型SDGCN。首先,构建了一种基于编码器-解码器的自分解方法,将交通流划分为受路网约束的稳定分量和被外部因素影响的动态分量。然后,设计了包含两个不同图卷积的双流图卷积层,利用两个分量中不同的空间相关性,提取更具针对性的空间特征。与其它预测模型的对比结果表明,在两个真实数据集上,SDGCN的MAE误差值分别降低了5.08%和4.31%。(3)针对动态且复杂的时间相关性和空间相关性,提出了一种面向动态时空相关性的速度预测模型ASDGCN。在时间维度,构建了一种基于自注意力机制的动态时间注意力,考虑不同时刻间动态的相互依赖关系。在空间维度,提出一种基于多头注意力机制的动态空间注意力,从多个层面学习节点间更为复杂的相互影响关系。与其它预测模型的对比结果表明,在两个真实数据集上,ASDGCN的MAE误差值分别降低了9.04%和6.77%。
其他文献
本文基于2015—2020年沪深A股上市企业的数据,采用文本分析技术构建企业数字化转型和企业价值研究模型,实证检验数字化转型对企业价值的影响及其作用机制。研究结果表明:(1)数字化转型能够显著促进企业价值的提升;(2)数字化转型能够提升创新效率,且创新效率在数字化转型与企业价值之间起部分中介作用;(3)异质性分析表明,在东部地区、高市场化地区和低环境不确定性情境下,数字化转型对企业价值的促进作用更
人脸特征点定位是指自动定位人脸特征点位置的方法,在人脸检测、人脸识别和面部表情分析等领域有着十分广泛的应用。级联姿态回归在人脸特征点定位表现优异,该算法基于初始形状,利用回归器逐步回归,逼近人脸真实形状。然而,当人脸包含局部遮挡时,人脸特征变得不可靠,从而导致人脸特征点定位和遮挡检测准确率降低,甚至导致人脸特征点定位失败。针对以上问题,本文提出如下两个解决方案:1)针对局部遮挡导致人脸特征点定位准
随着白天和晚上监视数据爆炸性的增长,跨模态行人重识别成为新兴的挑战。与只处理模态之内差异的传统的行人重识别相比,跨模态行人重识别遭受了由不同类型成像系统造成的额外的跨模态差异。因此提出红外图片着色的方法来消除模态差距。但是生成对抗网络的着色方法依然存在一些问题,本文就这些问题进行一些研究。最近的各种研究工作提出了各种生成对抗网络模型,以将可见模态转换为另一个统一模态,旨在弥合跨模态鸿沟。但是,它们
随着大数据、人工智能等技术的发展,数字经济时代已经到来,传统企业的数字变革也是大势所趋。索菲亚是家居定制行业中最早进行数字化转型的企业,最终实现了智能制造以及流程信息全打通的愿景。文章以索菲亚为例,对其数字化转型的动因、路径以及企业的盈利、营运、偿债、成长能力和EVA指标进行分析,以期为其他企业进行数字化转型提供参考。
叶脉是支撑叶片生长、运输叶片所需养分与光合作用产物的重要结构。叶脉根据所处位置、生长趋势和宽度等因素可以将其分级,例如一级叶脉定义为从叶柄向叶尖延伸的最粗叶脉,叶脉层级相较于叶脉网络更能表征叶脉的特性。叶脉的层级分割对图像分类、叶片建模和分子育种等领域具有重大意义。然而,当前对叶脉的研究大多停留在叶脉网络,由于层级叶脉复杂难以定位,更能发掘叶脉的特性的叶脉层级却少有涉及。一方面各级叶脉在色彩、亮度
生成一直是自动摘要领域的难题,现有的文本自动摘要方法在处理长文本的过程中,存在准确率低、冗余等情况。无法达到令用户满意的性能效果。主要问题有两点:其一,目前以卷积神经网络(CNN)/循环神经网络(RNN)为编码器的抽取式文本摘要模型,在进行长文本抽取时,模型对文本内容的理解不够,抽取效果极不稳定,无法抽取到长文本的主旨句。其二,目前单纯的抽取式摘要模型存在性能瓶颈,由于抽取式文本摘要的粒度过大,进
近年来,生物医学领域研究取得飞速进展,大量携带研究成果的文献被发表。尽管有人力物力去手动整理这些文献中的信息,但仅仅依靠人力对信息进行更新远远跟不上文献发表的速度。与通用领域相比,生物医学文献的信息抽取存在大量的嵌套实体和重叠关系等问题。因此,如何准确的从大量生物医学文献中抽取出有价值的知识,是目前生物医学领域信息抽取的重大挑战。为此,本文研究了生物医学领域的实体识别和关系抽取。对于实体识别,本文
近年来,得益于高性能计算机或分布式系统的超强计算能力,深度学习方法在计算机视觉相关问题上,尤其是对图像分类任务的研究,取得了长足的发展。然而,在实际计算操作或者现实生活中,出于安全或者隐私等方面考虑,常常面临难以获取样本或者图像样本量过少的问题,这在研究领域内被定义为小样本学习问题。而当涉及到小样本问题时,高性能的计算能力或是传统深度学习模型似乎显得力不从心。针对目前计算机视觉中的热门问题,本文对
近年来,汽车产业在移动互联、大数据及云计算等技术的推动下不断向着智能化、网联化方向发展,车联网在支持城市交通系统中安全相关应用方面具有广阔前景。在车联网中,高效的信息传播可以让车辆更好地了解潜在的风险和交通异常,对于提高交通安全性和效率具有重大意义,因此目前有大量的研究集中在车辆间安全消息广播方法的设计上。然而,现有的安全消息广播方法往往基于当前的信道状态或网络拓扑结构进行消息传输,只考虑最小化安
随着深度学习技术和计算机硬件的不断发展,基于深度卷积神经网络的目标检测技术相较于传统机器学习方法在准确性和实时性方面都取得了突破性的提升。尽管如此,大多数目标检测模型仍然依赖于高性能的硬件环境,这限制了目标检测技术在更多实时场景下的应用。近两年提出的基于关键点的目标检测方法即anchor-free方法如Corner Net、Center Net等避免了基于锚框的目标检测方法中大量与锚框相关的Io