论文部分内容阅读
近年来,随着我国国民经济的快速发展以及超高层、大跨度钢结构建设项目的不断增加,机械和建筑用厚钢板的市场需求量越来越大,对钢板厚度规格要求不断增加,性能要求不断提高。目前,我国100mm以上的特厚板主要采用模铸钢锭生产,这种方法存在制造周期长、能耗高,生产成本高、工作环境条件差等问题,不能满足经济发展的需要。采用用厚连铸坯生产特厚板具有成材率高,生产效率高、工作环境好,能耗相对较低等优势,被越来越多的钢铁企业所采用,采用厚连铸坯生产特厚板是未来的大势所趋。近年来,我国首秦、南阳汉冶特钢和新余钢铁等企业也新建了一批400mmm以上的特厚板连铸机,这些为我国采用连铸坯生产特厚板创造了硬件条件。本文结合东北大学与某宽厚厂合作开发优质特厚板课题,开展利用厚连铸坯开发100mm以上的特厚板的工业试验研究。针对特厚板开发过程中出现探伤合格率低的问题,开展了探伤缺陷形成机理的研究,从机理上揭示影响探伤合格率的因素和产生探伤缺陷的内在原因。本文主要研究工作及研究成果如下:(1)开展了热轧105-160mm Q345级特厚板的工业试制。采用普通的C-Mn‘钢,通过加大铸坯加热时间,合理的道次压下量分配,轧后缓冷等工艺措施,成功使用300mm的连铸坯生产出105mm Q345E-Z35的特厚板,-40℃条件下钢板中心部位的平均冲击功达到98J,z向断面平均收缩率达到42%;采用400mmm的连铸坯成功试制出符合Q345D-Z25要求的130mm特厚板和符合Q345C-Z25要求的150、160mm特厚板,探伤检验均满足探伤要求。(2)进行了100mm以上Q345q桥梁钢的工业试制。采用400mm厚的普通C-Mn连铸坯,轧制过程采用两阶段控轧,合理道次压下量分配等措施,进行110mmQ345q桥梁钢的工业试制。试制钢板热轧状态性能达到Q345qD-Z35的要求,钢板中心部位-20℃条件下的冲击功都大于50J,z向断面收缩率都大于38.5%,最高达到45.8%。(3)分析了中厚板生产中的常见探伤缺陷的特点,对比分析白点和氢脆缺陷的特征,提出氢和内应力是造成探伤缺陷的主要原因,明确了探伤缺陷形成机理的研究方向。(4)分析氢在钢中的扩散特点,建立钢板内部氢扩散逸出的数学模型,根据建立的模型分析了各工艺条件对氢扩散的影响。结果表明:钢板厚度越大,氢扩散越困难;钢板心部的氢扩散逸出的所需时间与钢板厚度的平方成正比;在空冷过程中,20mm以下的钢板内部绝大部分氢可自然逸出,氢的影响效果非常有限;20mm以上的钢板空冷过程内部氢扩散逸出量有限,需要采取缓冷工艺进行排氢。(5)利用有限元数值模拟方法,依据热弹塑性数学模型,对特厚板轧后加速冷却相变过程及随后冷却过程中的瞬时温度场、应力应变场进行了模拟,分析了相变过程中温度场、应力应变场的变化规律。特厚板轧后水冷过程会在钢板内部会产生巨大的温度梯度,引起相变的不均匀性,造成钢板内部产生较大的残余应力。当钢板冷速较快时,钢板内部残余应力呈现表层受压,心部受拉的特点,当冷速相对较慢时,钢板内部残余应力呈现表层和中心受压,1/4厚度处受拉应力的作用的特点。