【摘 要】
:
TiAl合金具有低密度、高强度、高温抗氧化等优异性能,在航空发动机和汽车、轮船等领域有良好的应用前景。TiAl合金在制备和加工过程中不可避免的会产生位错、孔洞、裂纹等缺陷。在外加条件下缺陷的演化会释放应变能,其中一部分应变能以弹性波的形式释放出来,便产生了声发射。由于不同的缺陷产生的声发射信号特征不同,所以通过提取声发射信号,对声发射信号进行处理,可以确定声发射源的类型,分析其演化行为。因此本文基
【基金项目】
:
国家自然科学基金(No.52065036); 兰州理工大学红柳一流学科建设基金;
论文部分内容阅读
TiAl合金具有低密度、高强度、高温抗氧化等优异性能,在航空发动机和汽车、轮船等领域有良好的应用前景。TiAl合金在制备和加工过程中不可避免的会产生位错、孔洞、裂纹等缺陷。在外加条件下缺陷的演化会释放应变能,其中一部分应变能以弹性波的形式释放出来,便产生了声发射。由于不同的缺陷产生的声发射信号特征不同,所以通过提取声发射信号,对声发射信号进行处理,可以确定声发射源的类型,分析其演化行为。因此本文基于分子动力学的方法,在纳米尺度下揭示材料变形断裂过程中的缺陷演化行为及声发射响应机制。主要研究结果如下:(1)对含孔洞的双晶TiAl合金试样进行了单轴拉伸模拟。发现孔洞大小和孔洞位置对材料的弹性模量影响较小;在进入塑性变形后,孪晶界对孔洞边缘连续发射的位错有阻碍作用,使晶体强度增加;相比含有晶内孔洞的试样,含晶界孔洞的试样在达到屈服应力时更容易产生稳定的位错结构,阻碍位错的运动,提高了晶体强度;此外,材料的屈服强度随孔洞尺寸的增大而降低。(2)对不同孪晶界间距的TiAl合金试样进行了单轴拉伸模拟。发现不论是大孪晶界间距还是小孪晶界间距,在拉伸载荷作用下,均在孔洞边缘形成Shockley不全位错环,以Shockley不全位错的运动开始发生初始塑性变形;而屈服应力随孪晶界间距的增大呈线性降低的趋势;孪晶界间距越小,材料中的孪晶界数量越多,位错滑移并穿越孪晶界时受到的抗力越大,被阻碍的位错在孪晶界间距较小的试样中由于可滑移的空间少而使位错容易堆积,从而引起材料强化;孪晶界间距的增大使得试样在塑性变形过程中晶内位错数量增加,从而引起声发射信号的数量和强度呈上升趋势。(3)在含有孔洞及孪晶界的TiAl合金拉伸过程中,声发射源主要包括晶格振动、位错活动、裂纹扩展。应力与动能分析、声发射功率和中值频率分布以及能量积分分析都表明声发射信号主要来源于晶格振动,并且具有较大的功率值范围和较低的中值频率,位错滑移的声发射信号表现出宽频域的特点,位错增殖和位错塞积的声发射信号表现出低功率的特点,裂纹扩展的声发射信号属于突发型信号表现为高频率、高功率的特征。
其他文献
高熵铜合金是基于三元Cu-Mn-Ni合金固溶体系,通过在等原子比Cu Mn Ni高熵合金中逐步添加Zn、Al和Sn元素而形成一类新型高熵合金。多主元的成分组成和简单的相结构赋予了高熵铜合金优异的力学性能,使其有望取代常规铜合金成为新一代高性能结构铜材。但迄今为止,有关于高熵铜合金摩擦磨损性能的研究较少。本文以高速、重载和冲击等苛刻工况下的应用为导向,基于高熵合金固溶体相的形成原理,以Cu、Mn、N
目前基于“焓”概念的传统合金材料设计理念趋于极限,而基于“熵”概念设计的新型金属材料,高、中熵合金和非晶合金,颠覆了传统的材料设计思想并在性能上不断取得突破,而由等原子比第一代高熵合金发展而来的非等原子比多相第二代高熵合金,合金的设计自由度更大、性能上的“鸡尾酒”效应发挥更充分,使其具有高强和高耐蚀性等,且弥补了亚稳态材料室温脆性以及亚稳晶化的不足。本文采用磁悬浮熔炼-负压铜模吸铸法,制备出单相F
随着科技的飞速发展,轻质、节能、多功能的材料越来越受人们的欢迎。金属材料的单一性能很难再继续满足实际工业需求,异种金属复合材料因同时具有多种优异的性能而在航空航天、电力电子、汽车制造及冶金工程等工业生产中被广泛应用。在我国电解铜不锈钢阴极板的生产制造过程中,相对于传统铜钢包覆型工艺结构,如果选用铜/钢异种金属直接焊接的结构,其中铜直接作为导电杆起导电作用,不锈钢起承载作用。这种新的结构不仅使制造工
随着电子信息,交通运输等领域的快速发展,工业上对高强高导铜及其合金的需求日益增加,但目前我国在高强高导铜的加工和生产中仍存在诸多问题,其中就包括大尺寸的铜材无法满足高强度和高导电率的要求,这直接关系到我国基础产业的发展。为了制备出大尺寸的高强高导铜材,本文以ECAP-Conform(ECAPC)处理后的工业纯铜(M2 Cu,俄罗斯铜牌号)作为研究对象,通过塑性变形技术(室温和低温轧制)和随后的退火
金属基合金粉末中添加不同的陶瓷颗粒形成的复合材料对于各种形式的磨损及腐蚀都有较好的抵抗能力,这主要是硬质颗粒与强韧基体相结合的作用。而添加WC增强颗粒的镍基复合材料被广泛应用于制备各种具有高耐磨耐蚀性的机械设备零部件,以提高其使用性能及寿命,如采矿设备、磨具和仪器仪表中。本文运用真空熔覆技术,在45钢表面制备具有弥散分布结构和三维网状织构的镍基复合涂层,研究了组织的微观形貌和相组成以及涂层的形成机
焊接过程中产生的电弧等离子体中有各种带电粒子,若引入外部磁场,这些带电粒子会受到洛伦兹力的作用,使电弧等离子体的受力状态发生改变,这就为通过外加磁场来改善大电流GMAW焊接工艺,进而提高焊接效率提供了可能。磁控电源是磁控焊接技术研究中的关键设备之一,对焊接过程机理研究及质量控制有着直接的关系。所以本文应用逆变技术,研制一台以16位单片机80C196KC为控制核心的数字化双逆变磁控电源,其能够输出频
本文以铝合金和稀土这两大特色资源作为研究对象,通过在7075铝合金中添加0.2wt.%的稀土Y,制备了7075Y合金。利用光学显微镜、扫描电子显微镜、电子背散射衍射、透射电子显微镜等手段研究了7075Y合金在挤压态、固溶态、时效态条件下的微观组织变化规律,同时利用显微硬度仪、万能拉伸机对其力学性能进行了试验,探讨了Y元素在合金加工中的作用机理。主要研究结果如下:1.稀土Y在挤压过程中对晶粒的独立细
由序/熵调控设计得到的高熵合金和非晶合金,颠覆了传统的材料设计思想,并在性能上不断取得突破。其中非等原子比-多相第二代高熵合金的设计自由度大、性能上的鸡尾酒效应发挥更充分,而同时发展起来的中熵合金的主元素种类更少、易于工业化应用。本文系统研究了Mn元素含量变化对Fe-XMn-5Si-10Cr-0.9C(X=10~25,wt.%)中熵合金组织和力学性能的影响。研究结果表明,合金的组织为fcc结构,随
非晶合金(Bulk Metallic Glass,BMG)是上个世纪六十年代发展起来的一种新型金属材料,与传统的金属晶体材料相比较,它具有独特的原子堆积结构,使其在物理、生物、化学等方面具有优越的性能,如:高强度、高弹性极限以及较好的软磁性、电化学性能。但是在室温下,非晶合金很难加工成形的缺点导致非晶合金在工程领域中的应用受到了极大地限制。因此,寻找一条崭新的加工技术路线对非晶合金在未来的发展中具
采用表面改性技术可以在很大程度上提高普通工业材料的强度和硬度,从而改善材料的耐磨性和耐腐蚀性。Al Co Cr Fe Ni Cu系高熵合金有较高强度和硬度、良好的延展性、优异的耐磨性和耐腐蚀性,在工业制备领域有非常好的应用前景。为了提升普通工业材料(如工业用钢)自身较差的耐磨和耐蚀性能,本文在45钢基体上使用冷喷涂辅助合成AlCoxCrFeNiCu(x=0、0.5、1、1.5、2)高熵合金涂层。研