论文部分内容阅读
微机械陀螺与传统陀螺相比具有体积小、重量轻、成本低等特点,因而具有广泛的应用前景。本论文对一种在大气环境下工作的新型解耦结构的微机械陀螺进行了研究,包括器件结构的原理设计、尺寸优化、工艺制作、测试电路设计和性能测试等。
在对振动式微机械陀螺的基本原理和动力学方程进行分析的基础上,研究了陀螺的振幅与驱动模态和检测模态固有频率的关系,并讨论了空气阻尼的计算方法及其对陀螺工作特性的影响,提出了陀螺的设计基本原则。在此基础上提出了一种新型的对称解耦微机械陀螺结构。该结构具有非常好的对称性,通过梳齿电容进行静电驱动,采用了梳齿电容和栅状电容两种不同的电容结构共同实现电容检测。
通过理论计算和仿真实验验证了所提出结构的驱动模态和检测模态频率匹配性,对结构进行了静力学、动力学分析,得到了陀螺的解耦特性。并研究了静电驱动力、梳齿电容、栅状电容的计算方法,证明了同时使用两种电容检测结构能提高检测电容的变化量。
研究了陀螺的驱动频率、驱动、检测模态固有频率、中央质量块形状、板间隙、机械热噪声和涡流效应对陀螺性能的影响,并在此基础上对陀螺结构进行了优化设计。
利用单晶硅体微加工工艺实现了陀螺的制作,研究了陀螺制作的关键工艺流程,分析了陀螺制作中需要注意问题。设计并实现了陀螺的自增益控制闭环驱动电路,使得陀螺的驱动幅值保持恒定。设计、仿真并实现了陀螺的电容检测电路。
在大气下实现了微机械陀螺的性能测试。检测了陀螺驱动、检测模态固有频率和品质因子;检测了陀螺的工作带宽、刻度因子和线性度。分析和测试结果表明,本论文设计制作的微机械陀螺驱动模态和检测模态的固有频率非常接近,在大气压下实现了较高的品质因子和灵敏度。性能基本能够满足初步应用要求。