【摘 要】
:
在Si基CMOS技术中,芯片中集成度的提高取决于晶体管的尺寸等比例缩小,但随之带来的短沟道效应的加剧使得传统的Si材料逐渐接近其物理极限。锗(Ge)材料具有较高的空穴和电子迁移率,被认为很有可能在将来的技术节点中取代硅。然而,由于n型掺杂元素(P、As、Sb等)在Ge中的溶解度低、扩散速度快、激活率低,导致Ge MOSFET中源漏具有较大的寄生电阻,且难以形成浅结。为改善Ge MOSFET中存在的
论文部分内容阅读
在Si基CMOS技术中,芯片中集成度的提高取决于晶体管的尺寸等比例缩小,但随之带来的短沟道效应的加剧使得传统的Si材料逐渐接近其物理极限。锗(Ge)材料具有较高的空穴和电子迁移率,被认为很有可能在将来的技术节点中取代硅。然而,由于n型掺杂元素(P、As、Sb等)在Ge中的溶解度低、扩散速度快、激活率低,导致Ge MOSFET中源漏具有较大的寄生电阻,且难以形成浅结。为改善Ge MOSFET中存在的这些问题,双重离子注入是一种可能的解决方法。本文在Ge片上PECVD沉积SiO2,后续经过清洗、光刻与刻蚀、离子注入与激活、生长并刻蚀接触电极等步骤,在p型Ge上形成n+/p结,通过以上方法,在锗上获得了开关比为103的n+/p结。使用As、P双离子注入提高n+/p结的性能。分别改变As和P的注入顺序,并在As 25-65 keV/P 20-35 keV的范围内改变注入能量,测试其对n+/p结整流特性的影响。该系列的研究表明:注入As和P的先后顺序对于n+/p结的整流特性基本无影响;增大双离子注入中注入As的能量使得n+/p结的开态电流(Ion)增加,理想因子降低;增大注入P的能量使得n+/p结的开态电流增加,但理想因子反而增大。同时,改变As和P的注入顺序,并在As 25-65 keV/P 20-35 keV的范围内改变注入能量,通过TRIM仿真工具模拟双离子注入后n+/p结的结深,并通过TLM(传输长度法)模型测量不同的离子注入工艺后金属-半导体的接触电阻和n+锗的方块电阻。该系列的研究表明:随着注入As和P能量的增大,n+/p结的结深增大(变化幅度为从20 nm-50 nm);随着As注入能量的增大,金属-半导体的接触电阻和Ge的方块电阻基本无变化;但随着P注入能量的增大,金属-半导体的接触电阻和Ge的方块电阻均有下降趋势;通过方块电阻的数值和TRIM对于结深的模拟结果得到注入形成的n+锗体电阻率的数值。可以发现随着注入As能量的增大,注入形成的n+锗体电阻率增大;但随着注入P能量的增大,注入形成的n+锗体电阻率减小。因此本文认为,为获得较低的源漏寄生电阻,应尽可能增大As/P双注入工艺中P的注入能量。
其他文献
随着半导体制造工艺的飞速发展,集成电路工艺尺寸越来越小,硅片有效面积寸土寸金,深槽隔离技术开始被广泛应用于特殊器件的隔离工艺。深槽隔离技术是利用各向异性干法刻蚀机,在硅片隔离区刻蚀出特定形貌的深槽,再使用扩散工艺进行介质填充,达到在硅片上形成深槽介质隔离的目的。深槽隔离技术最关键的工序是深槽刻蚀,深槽刻蚀最大的技术难点在于难以获得陡直平坦的侧壁形貌,所以深槽刻蚀平台的开发变得极为重要。本文提出了一
1型糖尿病是一种自身免疫性疾病,大量β细胞丢失导致永久性的内分泌缺陷。增强或诱导内分泌胰岛的内在再生能力,并设计新的策略来产生分泌胰岛素的细胞,是糖尿病治疗研究的重要方向。小鼠成体胰腺中存在静息细胞应对损伤,并且细胞静息作为体内一种成体干细胞的保守机制存在于一些组织中,在稳态维持和应对组织损伤中发挥重要作用。前期实验发现了Setd4蛋白调控的细胞静息的进化保守机制,在链脲佐菌素诱导的1型糖尿病损伤
随着数字集成电路和片上系统(System on Chip,SoC)设计复杂度的不断提高,对SoC系统进行快速可靠的验证变得越来越重要。同时,多样化的应用需求对总线提出了更高速度、更低功耗、可配置、可扩展等要求。其中,串行同步双线总线I2C及其衍生总线以功耗低、抗干扰能力强、简单两线等特点,被广泛应用于各类产品中。但这些总线无法采用一个较为通用的验证知识产权(Intellectual Propert
随着集成电路(Integrated Circuit,IC)的技术工艺与设计能力日益发展,它的设计规模和复杂程度也不断增加,由此导致IC验证的难度不断加大,占据了越来越多的时间。通用验证方法学(Universal Verification Methodology,UVM)由于其重用性强、易用性好等特点,现在已成为主流的验证方法。然而,IC规模的增加给基于UVM的IC验证也带来了一定难度,比如搭建验证
新时代对普惠金融提出了新要求,传统模式下的商业银行小微金融业务模式亟需更新,不仅需要建立线上新渠道,还需要优化线下渠道,线上和线下相结合,主动融合到数字化的场景中。同时,需要依托金融科技来提高营销的精准性和风控能力,并不断地进行产品的创新、迭代以满足小微客户的差异化需求。
新兴产业对信号基板载体要求介电损耗更低、耐候性稳定、介电常数更精准,高频覆铜板因具有更优异的性能而得到迅猛发展。论文以聚四氟乙烯(PTFE)树脂为基体,陶瓷粉体为填料,电子级玻纤布为架构,研究了陶瓷填料种类、陶瓷填料添加量、偶联剂的种类、压层工艺等对PTFE基陶瓷复合玻纤布高频覆铜板的性能影响。最终研制出介电常数2.65~10系列化、介电损耗小于等于0.0025、吸水率小于0.06%、铜箔剥离力大
目前,相变储能技术是提高能源回收利用率的研究热点,也是实现能源可持续发展道路的关键一步。甲酸钠作为一种潜热值大,相变温度合适的相变材料在中温储能领域有着广阔的应用前景,但也存在着有机相变材料导热系数低的共同缺点。本文对不同厂家和纯度的甲酸钠进行了研究,并确定了一种甲酸钠进行后续研究。采用“浸渍、压块、烧结”三步法,向纯甲酸钠中添加了不同含量(0wt.%、5wt.%、10wt.%、15wt.%和20
作为汽轮机系统中的重要设备,凝汽器的运行性能与汽轮机组的能耗指标与安全稳定息息相关。凝汽器运行时内部蒸汽流动复杂,且外形尺寸很大,因此运行性能受内部结构影响非常大。随着计算机技术和工程技术人员对凝汽器内部结构的不断关注,利用计算流体力学对蒸汽在凝汽器内部的数值模拟应用越来越广泛。本文基于HL项目凝汽器连续出现换热管振动断裂的实际情况与特征,综合考虑汽轮机排缸与凝汽器进汽段的结构特点,利用现有的计算
为了避免饱和蒸汽中的液滴进入汽轮机,从而对高速旋转的动叶片产生水蚀,常常需要配置汽水分离器在饱和蒸汽汽轮机的入口端。利用汽水分离器把饱和蒸汽中的液滴分离出来,从而避免了汽轮机的水蚀,使得汽轮机能够更安全地运行。由于饱和蒸汽汽轮机常常面临变工况的问题,如进汽流量发生变化,或者进汽湿度发生变化,所以为了能够了解汽水分离器的性能,更好地保证汽水分离器的分离效率,研究汽水分离器在变工况下的性能就变得异常迫
数模转换器(DAC Digital to Analog Converter)能够完成信号从数字域到模拟域的转换,是无线通信系统中不可或缺的一部分。而随着人们对信息传输速率的要求不断提高,数模转换器设计的速率要求也随之提高。同时高速数据和有限传输带宽的矛盾催生了各种频谱利用率更高的通信技术,而这些技术往往会给数模转换器的精度提出考验。由此可见,高速高精度的数模转换器设计具有很大的研究价值。电流舵型数