基于压力信号的双循环流化床大异重颗粒流动规律研究

来源 :华北电力大学(北京) | 被引量 : 1次 | 上传用户:youlishi
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
当前,利用流化床装置进行的气化技术是生物质能源利用的重要途径。其中双循环流化床系统采用鼓泡流化床和快速流化床组合的方式,对生物质气化反应涉及到的气化和燃烧过程进行分区强化,可有效提高产气品质和产量。该系统因两床流化状态的不同而存在复杂的颗粒流动规律,且生物质-惰性流化介质混合颗粒的物性差异又会加剧其复杂程度。为此,本文采用石英砂与稻壳所组成的大异重颗粒作为实验床料,分别在鼓泡流化床和双循环流化床冷态实验装置上进行压力信号分析,研究其波动特性与颗粒流动规律间的关系,建立数据驱动模型和动力学模型实现颗粒循环流率等状态参数预测和故障诊断,为双循环流化床气化装置的运行、设计提供理论基础。(1)在鼓泡床冷态实验装置上,对稻壳-石英砂大异重颗粒的初始流化特性进行实验研究和初始流化速度经验公式的回归拟合,发现大异重颗粒中稻壳质量分数和石英砂粒径的增加将造成颗粒初始流化速度的增大;对不同表观气速、床层物料质量、石英砂颗粒平均粒径和稻壳质量分数下的床层压力信号进行的特征提取方法表明鼓泡床内颗粒的运动规律在很大程度上受气泡相的影响,因而其压力信号的主频多分布在5Hz左右,HHT变换后中频段和小波多分辨率分析后的3尺度(6.25~12.5 Hz)和4尺度(3.125~6.25 Hz)所占能量较大,且递归图和特征参数通过非线性分析方法同样表明床内颗粒运动因气泡相的影响呈现明显间歇性。(2)在双循环流化床冷态实验装置上,对双床间大异重颗粒流动规律开展了实验研究,发现表征运动规律的循环流率和循环物料组分随气化室风速、提升管风速、床层物料量、石英砂粒径以及初始稻壳质量分数的变化而呈现不同的变化规律,且初始床层物料量对颗粒运动规律的影响较大,在实际生产中应加强对该参数的监测和控制;基于实验结果,建立用于颗粒循环流率和循环物料组分变化预测的BP神经网络、遗传算法优化的BP神经网络、支持向量机、最小二乘支持向量机、核极限学习机和核极限学习机模型。其中,核极限学习机模型对上述两状态参数预测的平均绝对百分比误差分别为2.35%和1.48%,具有较高的泛化能力和预测精度且预测时间较短,可作为较优模型实现对运行过程中状态参数的监测与预警。(3)在不同控制参数下,通过压力信号分析方法对双循环流化床系统的提升管(快速床)内颗粒流动规律进行研究,发现压力信号波动的平均频率分布在25Hz左右,且HHT变换后的高频部分和小波多分辨率分解后的1尺度(25~50 Hz)和2尺度(12.5~25 Hz)能量的占比较大,表明提升管内颗粒运动时存在强烈的颗粒碰撞、摩擦作用。此外还发现提升管风速的通过控制两床间颗粒循环流率影响到气化室内的颗粒运动规律,使其压力信号主频分布于10Hz左右,其小波分析时2尺度(12.5~25 Hz)和3尺度(6.25~12.5 Hz)能量占比较大,且对应的递归参数(层流率)也呈现一定的变化规律。(4)过向双循环流化床中加入生物质结块和堵塞气化室布风装置不同区域的方法,模拟床内发生的结块和堵塞故障,进行各故障状态下压力信号特征参数与结块程度、堵塞位置间关系的研究,发现结块、堵塞故障将造成颗粒流动规律的变差,并使对应的压力信号波动特征随故障的不同而呈现不同变化规律。在此基础上,采用小波分解(变分模态分解)与样本熵(特征能量)相结合的方法对压力信号进行特征提取,并建立核极限学习机模型实现对故障的诊断和分类,其中,基于小波分解与特征能量提取的核极限学习机模型在对故障诊断时的训练和测试精度分别高达100%和82.50%,可实现压力信号在双循环流化床系统诊断方面的应用。(5)根据颗粒浓度分布(密相-稀相分区)和颗粒速度变化(加速-充分发展区)分别建立提升管压降模型,比较选取较优提升管压降模型,然后基于两床压力平衡和床料质量守恒建立双循环流化床动力学模型,实现大异重颗粒循环流率的预测。模型建立过程中,根据各分区特点将大异重颗粒分别采用均相颗粒或分相颗粒进行替代。预测结果表明,尽管对大异重颗粒循环流率的预测存在一定误差(最大误差-22.18%),但该动力学模型对控制参数与循环流率间关系的预测与实验测量具有相同的变化趋势,因此其在对双循环流化床系统尤其是大异重颗粒时的循环流率预测具有较高的适用性。
其他文献
水库是水资源时空调配的重要工程措施,其通过对来水进行合理蓄泄调节,达到避免或减少洪灾损失、缓解水资源危机、改善上下游生态环境和增加水力发电效益等目的。近年来,随着我国各大流域梯级水库群的逐渐建成和社会经济的快速发展,防洪、发电、供水、生态等各部门之间的关系越发复杂,矛盾逐渐加剧,再加上全球极端气候变化对流域的综合影响,开展梯级水库多目标互馈关系及决策方法研究,寻求流域复杂工程和环境下的多目标优化调
堆芯组件是快堆的重要部件,其流动特性对于快堆安全与经济性运行有着决定性影响。快堆堆芯组件中存在着大量异形结构,结构复杂且种类繁多,因此针对异形结构流动特性的研究面临一定的困难。目前的研究工作一方面主要依赖于工程试验,但工程试验中关于几何参数对异形结构流动特性的影响规律研究较少;另一方面很多研究侧重于开展基于计算流体动力学的数值模拟,受制于有限的实验数据,数值结果的可靠性未得到充分的实验验证,因此有
航天事业的迅猛发展带来了巨大的社会和经济效益。航天器所处的空间辐射和温度环境十分恶劣,所引起的介质材料电荷积聚和放电效应,严重制约了高电压、大功率航天器的发展。当前航天器介质材料在粒子辐射下的电荷积聚特性研究多基于常温下开展,考虑到航天器表面的温度循环以及介质材料受温度影响显著的电荷积聚特性,需要对介质材料在不同温度和温度循环中电子辐射下的电荷积聚机理及电荷对沿面闪络的作用展开研究。本文针对低轨道
纳米流体等离激元光热转化是国际前沿课题,也契合国家重大需求,例如纳米流体吸收太阳能实现光热转化在发电、海水淡化、污水处理等方面有巨大应用潜力。此外,在光流控等功能化应用方面,用光控制纳米流体运动有其独到优势,拥有很大的施展空间。纳米流体中的颗粒与入射光耦合发生局域等离激元效应(LSPR)实现光热转化,成为纳米尺度的移动热源。因此,纳米流体光热转化及相变传热中的核心科学问题是“纳米流体中时空分布变换
纵观国内外创新发展经验,很多全球知名创新区均呈现出"廊带"分布特征,科创走廊已成为多个城市跨区域合作的一种重要模式。基于创新链视角,以"128号公路"创新廊道和广深科创走廊为例,探究科创走廊的建设机制,研究发现:第一,科创走廊可视为一个包含核心节点和辅助节点的虚组织,且所有节点不是等量齐观的,核心节点具有核心功能;第二,若核心节点的功能弱化,科创走廊会呈现劣化趋势;第三,科创走廊的建设包含从知识资
日前,能源与环境问题已成为制约人类社会长期发展的瓶颈,回收利用低品位余热能够有效提高能源利用率,缓解当前能源短缺与环境污染问题。有机朗肯循环(ORC)以低沸点有机物代替常规朗肯循环中的水作为循环工质,具有系统结构简单、余热回收效率高、投资成本低和运行可靠等优点,在低品位余热回收利用方面具有良好的应用前景。鉴于ORC技术的重要应用价值,本文对ORC系统及其关键部件向心透平进行了性能优化研究,并搭建了
煤炭是我国的主体能源和重要原料,为中华民族伟大复兴做出了不可磨灭的历史贡献,在今后较长时期内,特别是推动我国能源转型发展中还将发挥不可或缺的兜底保障作用。作为“双碳”目标的主战场,能源产业的减碳、降碳是我国“双碳”工作的重点方向。由于我国以煤为主的能源禀赋现状,在保障能源安全的基础上,降低煤炭消费总量及其消费过程中的碳排放强度是实现“双碳”目标的必然选择。当前,“双碳”目标已对煤炭行业整体技术布局
空化泡在外部声场的作用下会发生泡壁稳定性变化,这种稳定性变化在水力机械、噪声控制、生物医学等领域有重要作用。例如,当空化泡在水轮机叶片表面附近破灭时,其内部产生的微射流会对金属壁面造成冲击、伤害,甚至产生裂痕。而空化泡的表面在不断膨胀、缩小的过程中也会产生压力脉冲,引起局部、甚至全局流动状态的变化,影响水力机械的运行。空化泡的稳定性反映了空化泡自身维持稳定振荡的状态,主要分为四类:球形稳定性、刚度
对流扩散方程是一类基本的运动方程,方程中包含扩散项及对流项,可用来描述河流污染、大气污染、核污染中污染物质的分布,流体的流动和流体中传热等众多物理现象。但对于这类方程,除了极少数简单情形,大部分问题目前还无法求得精确解,所以利用数值方法进行数值模拟是求解这类问题的主要方法,构造精确、稳定和高效的数值方法成为研究这类问题的重要内容。本文提出了一种边界型方法—半边界法用于数值求解线性及非线性对流扩散方