光纤传像元件固定图案噪声形成机理研究

来源 :中国建筑材料科学研究总院 | 被引量 : 0次 | 上传用户:NobelHsu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
光纤传像元件是微光夜视、粒子探测器件用像增强器的核心元件,已广泛应用于兵器、电子、航天、核探测等领域的光电信号探测、识别与成像。当前这些领域迫切需要高清晰、宽动态、宽光谱和高灵敏探测成像技术,并对与之配套的光纤传像元件的质量提出了更高的要求。由于光纤传像元件中固定图案噪声(Fixd Pattern Noise,FPN)的存在,限制其使用性能和制备良品率的提高。如何抑制FPN,减少其对探测成像性能的负面作用,已成为光纤传像元件应用基础研究中的关键课题之一。然而,国内外关于光纤传像元件FPN的研究相对较少,更没有系统的理论来阐述其形成的机理。为阐明光纤传像元件FPN的形成机理,本文主要通过现象分析、理论模拟和实验验证三者结合的方式展开研究。首先,分析光纤传像元件的FPN表现形式。通过研究光纤传像元件热压、扭转、拉伸等热过程后的FPN的表现形式及其与工艺间的关系,利用光纤疵点仪表征固定图案噪声微观形态和分布规律,利用扫描电镜(Scanning Electron Microscopy,SEM)和原子力显微镜(Atomic Force Microscope,AFM)等手段分析光纤传像元件内部纤维的微观结构与形貌,利用能谱仪(Energy Dispersive X-ray Spectrometer,EDS)半定量分析成分变化趋势。基于检测分析结果建立光透过率的差异与FPN之间的关系,进而分析FPN的形成机理。其次,基于经典物理理论采用仿真软件模拟了不同条件下光子在单根光纤和光纤束中的传播,获得了导致光纤传光条件破坏的几种状态,并量化产生FPN的极限参数。利用Tracepro软件模拟了光纤传像元件纤维传光机理,并基于光纤传像元件斑点、鸡丝、网格等几种FPN的表现形态,分类模拟了单光纤和光纤束内传像条件被破坏的过程与结果,获得了光纤内部气泡、杂质与光纤透过率的关系;光纤芯皮界面扩散对光纤传光性能的影响;以及光纤经热压、扭转、拉伸等热处理后导致多根光纤粘合结构对于纤维传光性能的影响。利用Comsol软件模拟了倏逝波渗透现象对于光纤传像元件FPN形成的影响。最后,基于FPN表象的分析与理论模拟结果,设计了光纤内结石、气泡和光纤形变实验,以验证减少结石、气泡缺陷和抑制光纤形变对控制FPN的作用。通过研究发现,光纤传像元件中斑点、鸡丝型FPN产生的机理:光纤传像元件内部存在杂质和气泡,其尺度大小决定FPN。当杂质尺寸达到临界值时,30%的光子在杂质表面被吸收或反射;气泡尺寸大于临界值时,30%的光子在气泡表面发生折射和反射损失,导致纤维透过率低于正常值的70%。扭转、拉伸等热过程导致光纤锥比增大,光线传输过程中界面反射角不断减小,光子溢出数量增多,透过率下降。黑网型FPN形成机理:光纤束(复丝)边界处纤维变形严重,包层厚度变小,光子传输具有电磁波特性,倏逝波在界面处渗透进包层无法返回纤芯,部分被间隙内光吸收丝(EMA)吸收,导致光纤透过率下降而形成黑网;复丝边界光纤芯皮界面成分扩散严重,阶跃型光纤变为渐变型光纤,光线传输过程中全反射临界角减小,光子损失增多,输出光通量低于正常复丝内部纤维情况。白网型FPN形成机理:在热压、扭转或拉伸等热过程中,复丝边界处光纤皮层减薄直至消失,光纤芯层出现粘连,降低光子损失程度,导致光通量大于其他正常变形区域,在复丝边界处显示为明亮网状结构。
其他文献
改革开放以来,我国居民生活水平不断提高,但在非均衡的发展战略、部分先富的政策制度以及城市和东部沿海地带区位优势的共同作用下,城乡、区域、阶层间的差距不断扩大,发展不平衡不充分的现状没有从根本上发生改变。同时也直接导致了居民在收入、财产等多个领域的分配失衡,阻碍了全面建设小康社会的进程,使得不同社会群体间在思想和行为等方面的冲突日益加剧,不利于社会的凝聚力,而由此造成的极化现象更成为社会不稳定的根本
石油对于世界上的各个国家来说依然是非常重要的能源。石油作为不可再生的资源被各个国家消耗的趋势不断增长,尤其是我们国家正处在高速发展的阶段。我国石油对外依存度在逐年增高,2017年已接近70%,在当前国际形势日趋复杂的情况下,如何实现年产2亿吨原油的稳产是关系我国现代化建设和能源安全的重大战略问题。随着经济的快速发展,常规油气资源已逐渐不能满足对于油气资源的需求。作为未来常规能源重要战略性补充的低渗
大学生体质健康水平对其个人价值体现以及国家的深远发展都有着重要意义。鉴于当前大学生体质健康呈现下降趋势,对于大学生体质健康提升的研究必须予以重视。该文在分析大学生体质健康现状的基础上,就近年来阻碍大学生体质水平提升的影响因素进行了阐述,进而提出了几点健康促进策略,期望可以对大学生体质健康改善工作提供帮助。
高镁水泥具有良好的后期微膨胀特性,对大体积混凝土(如大坝)的后期温降收缩具有补偿作用,能显著提高其抗裂耐久性。然而,国内外关于水泥熟料中具有后期微膨胀作用的方镁石的定量测定方法仍无标准可循,对高镁水泥中方镁石晶体含量、尺寸和分布的调控技术及其在水泥制备中的应用缺乏系统研究。本文主要研究内容为发明了一种能够准确定量水泥中方镁石含量的方法;阐述了煅烧温度与高镁水泥熟料中方镁石含量和尺寸之间的关系,阐明
以水泥为胶凝材料,膨胀聚苯乙烯泡沫塑料颗粒(简称EPS颗粒)、掺合料、泡沫剂、改性剂、水等为主要原料,采用物理发泡工艺制备干表观密度不大于120 kg/m3的超轻水泥基复合保温材料(Ultra-light cement-based composite thermal insulation material,简称UCIM),使其具有良好的强度和热工性能。UCIM结构由EPS颗粒与泡沫混凝土基体互穿构
电磁污染与国防建设推动吸波材料的研究不断深入。复合吸波材料不仅改善了单一材料无法兼具介电损耗和磁损耗的缺陷,而且复合结构可以提升材料整体的阻抗匹配性,使其满足吸收能力强和吸收频带宽等性能要求。三元纳米吸波材料的微纳结构构筑是提高材料吸波性能的重要途径之一。本文旨在合成兼具多种损耗机制的纳米复合吸波材料,以MoS2纳米花为载体,合成MoS2/Co Fe2O4纳米材料。在Mo S2/Co Fe2O4的
硫铝酸钙-硫硅酸钙-硅酸二钙复合矿物体系是新近提出具有发展前景的低碳新体系。这种体系的烧成温度比硅酸盐水泥熟料低200℃左右,二氧化碳排放和能耗分别低约25~35%和10~15%;比硫铝酸盐熟料的烧成温度低100度以上。其既具有硅酸盐水泥性能稳定发展的特点,又具有硫铝酸盐水泥早期强度高的优点,推广应用前景较为广阔。本文研究了分别固溶0.5wt%P5+、F–、Na+、K+、Li+5种不同离子的硫硅酸
随着电磁仪器设备与电磁技术的广泛应用,人们对电磁屏蔽材料的需求越来越多。电磁屏蔽玻璃既具有电磁屏蔽性能又具有可见光透过性,在军事和民用领域应用需求明确,对电磁屏蔽玻璃的研究成为屏蔽材料研究的热点方向之一。针对在10 k Hz~18 GHz宽频段高效电磁屏蔽的技术难题,本文制备研究了高频电磁屏蔽ITO镀膜玻璃和低频电磁屏蔽铁镍合金镀膜玻璃,并设计验证了二者复合的宽频电磁屏蔽玻璃。主要研究内容及结论如
赤藓糖醇的相变温度118℃,具有储能密度大和无腐蚀性等优点,在太阳能蓄热、工业余废热回收、清洁供暖等中温储能领域有广阔的应用前景,但赤藓糖醇在凝固过程中过冷严重,且导热性能较差,这是限制其应用的主要因素。本文以赤藓糖醇作为蓄热材料,采用有机盐为成核剂,使其与赤藓糖醇形成分子间氢键,打破赤藓糖醇内部分子之间的平衡,促进潜热的释放,抑制赤藓糖醇的过冷效应;其次,添加膨胀石墨作为热强化材料,提高其导热系
超轻泡沫混凝土(Ultra-lightweight foamed concrete,ULFC)是干密度≤400kg/m3的泡沫混凝土,具有优异的保温、隔热和溃缩吸能特性,在墙体和屋面保温、飞机拦阻系统等工程应用中越来越受到重视。目前国内外在研究ULFC的耐久性时,大多直接采用现行泡沫混凝土标准的试验方法。实践表明,按照现行标准进行抗冻性和抗碳化性能试验时,存在试件烘干预处理时易开裂、冻融和碳化失效