论文部分内容阅读
先进制造技术作为制造业的核心技术和支柱,在航天、军工和汽车等领域扮演着越来越重要的作用,而其中刀具是先进制造技术的重中之重。由于无法准确掌握传统装备的加工状态,其实际生产效率和生产质量不足理论值的一半。而准确掌握刀具的加工状态可以有效的提高切削效率,降低工件次品率,防止由于刀具磨损甚至损坏造成的停机甚至更大的安全事故。近年来,如何实时、准确、快速的掌握刀具的加工状态已经成为了国内外学者研究的重点难点。传统的智能装备数据采集系统大多采用有线传输的方式,传输距离短、传输效率低、不能快速准确的掌握加工状态。而无线传输不仅传输速度快、距离远、效率高,同时可以实现多设备同时通信,在智能装备信号监测系统中有着广阔的应用空间。本课题受到了国家自然科学基金项目“硬质合金刀具微尺度刃口涂层技术与创成方法研究”(项目批准号:51475276)的资助,主要工作内容包括:设计了一种50KHz-1 50KHz的高频信号的工业无线数据高速采集与处理系统,能够实时并持续处理和分析微细加工状态数据。整体架构由上位机和下位机两部分组成;下位机以STM32(ARM Cortex-M3)为控制核心采集数据,并通过无线协议传输至上位机;上位机使用了基于Linux系统的平台接收数据,实现数据的实时采集、存储、处理分析和图形化可视化。为了提高系统传输速度,下位机数据以DMA方式在各个模块间传输,并通过IEEE 802.1 1b标准协议发往上位机;上位机采用时域特征和频域特征双图像分析显示,并使用基于蝶形算法的快速傅里叶变换(FFT)处理信号,提高了信号频域特征的处理速度。该系统体积小、成本低、灵活度高、功耗低、效率高,将来可以广泛应用于智能制造加工和智能装备设计中。为了检测整个系统的性能和可靠性,通过采集信号发生器输出的50-150KHz随机波形信号和矩形波信号,对系统的传输性能、时域频域图像质量和误差率进行了分析。测试实验表明该监测系统具有对50KHz-150KHz高频信号的采集处理分析的能力,总体传输时间小于2s、传输误差小于3%,可以快速准确的反映出加工过程状态的变化。使用所设计的数据采集系统对硅晶片的微细加工过程进行监测,研究了脆性材料加工过程中主轴转速和进给速度对声发射信号的影响,分析了加工过程中声发射信号和脆性材料加工状态的相关性。