水面与土柱蒸发过程中氢氧稳定同位素变化规律研究

来源 :长安大学 | 被引量 : 0次 | 上传用户:evaclamp
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
蒸发是引起水体氢氧稳定同位素分馏的主要原因之一,研究蒸发过程中的氢氧稳定同位素分馏有助于深入了解水文循环过程。通过一系列控制温湿度的室内水面蒸发与非饱和土柱蒸发试验,分析了温度与湿度分别影响下的水面蒸发试验剩余水比例f处于0.5左右时的稳定同位素分馏结果,并与理论模拟结果进行比较;探究了非饱和土柱在蒸发过程中地下水与剖面土壤水的δD、δ18O变化,从包气带岩性、剖面含水率变化以及剖面土壤盐分变化等方面分析了蒸发过程中氢氧稳定同位素分馏的影响因素。得出以下主要结论:(1)自由水面蒸发过程中,当剩余水比例为0.5左右时,δD、δ18O均与剩余水比例f呈线性关系,而且当蒸发处于同一湿度(温度)环境时,温度(湿度)越高(低),δD(‰)、δ18O(‰)随f变化越快,蒸发线的斜率也越低,氘剩余d值越小。理论模拟结果表明同一蒸发环境下动力分馏模拟结果与实测结果较平衡模拟更接近,更能够反映实际蒸发过程中的同位素分馏程度。(2)无论在何种蒸发环境下,无论蒸发量大小,纯土土柱与含60%砂土柱的地下水中的氢氧稳定同位素组成都处于稳定状态,几乎无变化。土柱剖面土壤水的δD-δ18O拟合线斜率均小于大气降水线斜率,而且随着蒸发的进行越来越小。(3)纯土与含60%砂土柱剖面含水率整体均随深度呈逐渐增大的趋势,但蒸发过程中纯土土柱的剖面含水率均大于原始含水率,含60%砂土柱仅在土柱深部含水率大于原始含水率。土柱剖面上δD、δ18O以及氘剩余d值的分布与含水率分布具有很强的相关性。土壤蒸发过程中氢氧稳定同位素的分布与水分运动关系密切,蒸发过程中同位素分馏主要发生水分子离开水体进入大气的过程中,其余位置均不发生明显的同位素分馏现象,且相同条件下土壤孔隙越小,发生同位素分馏的位置距离地表越近。(4)纯土土柱蒸发过程中以及蒸发结束后土柱剖面土壤p H值均大于蒸发前黄土p H值,呈强碱性。土柱表层土壤浸出液的TDS随着蒸发的进行越来越大,随着深度的增加TDS越来越小。K+、Ca2+、Na+、Mg2+、Cl-、NO3-、SO42-等7类离子由于蒸发过程中水分的运动在土壤表层富集,在土柱内部变化平缓。CO32-与HCO3-未出现表层富集的情况,而是在距土柱表面3~5cm处达到最大值,且在土柱内部存在波动现象。根据相关性分析结果,蒸发过程中土壤水的离子浓度变化对土柱内部同位素分馏虽然起到促进作用但是影响并不大。
其他文献
本文主要针对GB 4706.13-2014《家用和类似用途电器的安全制冷器具、冰淇淋机和制冰机的特殊要求》与IEC 60335-2-24:2020《Household and similar electrical appliances–Safety–Part 2-24:Particular requirements for refrigerating appliances,ice-cream appliances and ice-makers》在测试方法、判定依据的方面进行了对比,并通过案例分析对IEC
针对机械弹性储能系统多变量、强耦合和负载特性时变的特点,设计了机械弹性储能系统用永磁同步电机(PMSM)增量反推控制方法.在建立实际模型参数的机械弹性储能系统数学模型的基础上,推导设计了永磁同步电机速度增量反推控制器和电流增量反推控制器,分析了模型参数的鲁棒性,并从控制性能角度确定了控制参数.基于常规反推控制算法,增量反推控制将部分模型信息隐式表达,降低了对于系统模型参数的依赖性,提高了算法的鲁棒性和稳定性.仿真结果表明,与常规反推控制相比,增量反推控制下永磁同步电机可更加准确快速地跟踪指令,在参考转速突
上冻下藏风冷冰箱在高温高湿环境下使用,容易出现冷冻风道表面结冰严重、冷冻拨杆冻堵、风道内部结冰现象,从而影响冰箱制冷性能,严重时导致冰箱不制冷、噪音大.通过研究分析上冻下藏风冷冰箱冷冻风道结冰机理,优化冷冻风道结构设计,解决冷冻风道结冰问题,提升产品可靠性.
冰箱在高转速运行时往往存在低频嗡嗡声,影响用户感官体验,听觉上引起不适感.本文利用LMS噪声振动采集设备对冰箱压缩机、底板和空腔进行了测试和分析,深入研究冰箱低频声的产生机理,并提出了相应解决方案,冰箱轰鸣声得到明显降低.
现阶段,人们生活中的基本压缩机的应用越来越普遍,制冷压缩机是在制冷生产过程中提高气体压力输送气体,达到制冷效果的能量转换装置.压缩机是制冷行业的核心技术,只有确保制冷压缩机正常稳定一些,才能够保障制冷压缩机的运行效果.电气控制系统是制冷压缩机可以稳定运行的关键环节,如果电气控制系统出现故障,会导致制冷压缩机的运行效率受到影响.在实际研究中需要从制冷压缩机的组成和分类出发分析电气控制系统的功能,同时要对制冷压缩机电气控制系统的常见故障进行准确判断和处理,才能够确保制冷压缩机稳定运行.
近年来,随着工业的迅猛发展和人类生活质量的提高,使得含油污水排放量增多及海上石油泄漏事故频发,造成严重的水污染问题。如何去除水中油污,实现海洋抗污,制备含油污水分离材料就成为当前的研究热点。超浸润分离膜具有微纳米孔道结构,制备简便,成本较低,分离效果好,推动了超浸润分离材料的发展。但多数材料仅能完成混合物分离或者存在功能单一等不足,面对复杂污水体系,无法根据实际需求分离多种类型乳液以及去除水中其他
道路交通事故导致人员伤亡仍是全球范围内的严重问题。驾驶人驾驶行为表现是引发交通事故的根源,研究驾驶人与事故的关联是预防及控制交通事故的重点研究课题。在众多考虑人为因素的交通建模中,注意资源是描述较少的因素,心智游移是驾驶人将个体意识活动从驾驶任务中分离出来转移到与驾驶不相关的工作中的内源性引发分心的过程,可能改变对交通环境的感知能力、判断决策能力以及对车的控制能力,从而产生交通事故。因此,建立由人
20世纪末至今,随着我国城市化步伐不断加快,城市地区人口密度急剧增长,电力需求不断加大,输送电方式由最初的地上传输转变为地下电力隧道传输。对于一些发达城市,其地下轨道交通配套设施较为完善,电力隧道在修建过程中不可避免地出现穿越既有地铁线路的情况。而由于隧道开挖改变了初始的应力场,会导致既有地铁隧道产生附加内力和附加位移,严重时导致既有地铁隧道管片产生开裂、渗水等情况,对运营隧道的安全造成威胁。因此
本文针对电动汽车充电设施发展现状、回收技术发展情况进行了分析.随着电动汽车的迅速发展,充电设施的数量也呈爆发式的增长,随之而来将产生大量的报废产品.充电设施含有废线路板等危险废物,若不能得到妥善的回收处理,将会带来严重的环境问题.我国目前针对充电设施的回收尚没有引起足够的重视,国内开展的相关研究很少,也缺乏对回收行业的规范化管理.
同步碎石封层车广泛应用在公路养护中,常作业于速度和负载变化较大的周期性循环工况,传统车辆单一动力源为发动机,燃油经济性差,能源利用率低,污染排放严重。面对当前资源匮乏与环境污染日益严峻的现状,研发混合动力同步碎石封层车,有利于改善发动机性能,减少污染物排放强度,提升公路绿色安全水平。为提高同步碎石封层车的经济性和环保性,采用理论计算和软件仿真相结合的方法,对同步碎石封层车串联式混合动力系统展开研究