论文部分内容阅读
联乙炔基团具有共轭π-电子体系,是一种富电子基团。在UV光或γ射线辐射下,联乙炔单体之间会发生拓扑化学聚合,形成烯-炔交替的共轭聚联乙炔(PDAs)。PDAs是一种半导体聚合物,π-电子离域在整个共轭体系主链中,因此,PDAs具有独特的光学和电子性质。当PDAs接受各种环境刺激时,会发生明显的肉眼可辨的颜色变化,这使PDAs在化学或生物传感领域有广泛的应用。在PDAs体系中引入具有特定结构或功能的另一组分,制备具有特异性传感性能的PDAs传感器,可以扩大PDAs的应用领域。周期性介孔有机硅(简称PMOs)是一类独特的有机-无机杂化的介孔材料,其中,桥联有机基团共价键合在材料的孔壁上,呈周期性排列,不会堵塞孔道。PMOs材料具有有序的介孔孔道、较大的比表面积、孔体积以及共价嵌在孔壁上的有机官能团,使其在催化、吸附、生物医学、光电材料以及传感等方面均有重要的应用价值。本论文以联乙炔基团为基础,制备了联乙炔桥联硅氧烷和双联乙炔桥联硅氧烷。以阳离子三聚表面活性剂为结构导向剂,通过共缩聚和蒸发诱导自组装的方法分别制备了联乙炔杂化的PMOs纳米颗粒和薄膜材料。之后,利用254 nm的紫外光辐射联乙炔PMOs薄膜,诱导联乙炔基团发生拓扑化学聚合,得到了聚联乙炔杂化的PMOs(PDAPMOs)薄膜。通过小角X射线散射(SAXS)、高分辨率透射电子显微镜(HRTEM)、氮气吸附/脱附等温线以及固态29Si魔角旋转核磁共振(MAS NMR)等分析技术对材料的结构进行了表征,通过紫外-可见吸收光谱(UV-vis)、紫外-可见漫反射光谱以及傅里叶变换红外光谱(FT-IR)等技术对材料的光学性质进行了研究。最后,将双联乙炔桥联硅氧烷与罗丹明B有机硅前驱体混合,通过蒸发诱导自组装和接下来的拓扑化学聚合过程制备了罗丹明B功能化的双聚联乙炔(RB/bis-PDA)薄膜,成功将罗丹明B单元引入到PDAs体系中,构建了一种对金属铝离子有高灵敏响应的双比率吸收传感体系。主要研究内容如下:(1)以阳离子三聚表面活性剂为结构导向剂,通过联乙炔桥联硅氧烷(DASi)和正硅酸四乙酯(TEOS)的共缩聚作用,制备了一系列的联乙炔杂化的周期性介孔有机硅(DAPMOs)材料。在对材料的结构性质进行表征的基础上,进一步对材料的光学性质进行了研究。在DASi的荧光激发光谱中,在240和285 nm处出现了两个吸收带,归属为共轭C≡C-C≡的π-π*电子跃迁,这与DASi的紫外-可见吸收光谱相一致。而对于杂化材料DAPMOs,除了以上信号带之外,在330 nm处还出现了一个新的信号峰,这个信号的出现可能是因为联乙炔分子之间形成了聚集体,因为嵌在二氧化硅框架中的联乙炔基团排列致密、分子间相互作用很强。此外,以阳离子三聚表面活性剂和癸基紫精作为混合模板剂,构建了孔壁和孔道间的PMOs基电荷转移(CT)体系,其中的电子供体为孔壁中的联乙炔基团,电子受体为孔道中的癸基紫精分子。通过紫外-可见漫反射光谱和软X射线吸收近边结构光谱(XANES)证实了电荷转移复合物的形成。在330 nm光激发下,此CT体系中还发生了从孔壁上的联乙炔聚集体向CT复合物的能量转移。(2)在酸性条件下,通过蒸发诱导自组装和拓扑化学聚合过程制备了一系列的聚联乙炔杂化的周期性介孔有机硅(PDAPMOs)薄膜。所得到的蓝色PDAPMOs薄膜对温度响应灵敏,在热刺激下,会发生一个多步的热致变色过程,外观颜色相继变为紫色、红色和黄色,变色温度范围比较宽,从室温到150 ℃以上。这个多步的颜色转变过程可以被分为两大阶段:可逆的蓝-紫-红转变和不可逆的红-黄转变。第一阶段中的紫色和红色之间的转变是完全可逆的,红色相恢复为紫色相的过程非常迅速,而且此转变过程可以多次循环。利用拉曼光谱和温度相关的傅里叶变换红外光谱研究了 PDAPMOs薄膜比色响应的机理,结果表明,比色转变与PDAs主链的构象变化密切相关。此外,PDAPMOs薄膜还可以对机械力和有机溶剂比色响应,因此扩大了 PDAs在传感器方面的应用。(3)以六亚甲基二异氰酸酯基为连接基团,合成了双联乙炔桥联硅氧烷,然后以一定的比例与罗丹明B有机硅前驱体混合,通过蒸发诱导协同组装和接下来的拓扑化学聚合过程制备了罗丹明B功能化的双聚联乙炔(RB/bis-PDA)薄膜。考虑到联乙炔单元发生拓扑化学聚合的要求以及螺内酰胺-罗丹明衍生物的开环信号的强弱,将双联乙炔桥联硅氧烷和罗丹明B有机硅之间的摩尔比定为10:1。罗丹明B单元是通过相应的有机硅氧烷的水解/缩合过程固定在PDAs基质中的。所制备的蓝色相RB/bis-PDA薄膜仍然保留了 PDAs的热致变色特性,在高温处理下会转变为黄色相。蓝色和黄色RB/bis-PDA薄膜都可以选择性识别Al3+。在结合了 Al3+的薄膜的紫外可见吸收光谱中,观察到两个独立的吸收峰,分别归属为罗丹明单元开环的吸收峰(556 nm)和蓝相(617 nm)或黄相(470 nm)PDAs的吸收峰。利用这两个吸收信号的强度比(A556/A617或A556/A470),此RB/bis-PDA体系可以作为Al3+的比率紫外-可见吸收传感器。最后,利用X射线吸收近边结构光谱(XANES)研究了 RB/bis-PDA薄膜中Al3+的配位结构,结果表明,RB/bis-PDA薄膜中的A1以6-配位的结构存在。