基于神经网络的物体位姿识别与基于概率采样的机器人运动规划方法和仿真研究

来源 :上海交通大学 | 被引量 : 0次 | 上传用户:wanjjsaa
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目标物体的位姿识别和各种场景下的运动规划问题是非结构化环境下机器人作业的关键技术。一方面,现有位姿识别算法中,基于模板搜索匹配或者基于迭代的算法速度较慢,基于神经网络的算法往往模型体积较大,意味着更大的存储需求和计算量。而嵌入式的机器人系统往往存储和计算能力受限,但有实时性及精度需求。另一方面,机器人系统中往往存在多场景的运动规划问题,包括高维问题。因此,使用的运动规划算法需要便于泛化、适用于高维问题,并且速度更快的算法更有优势。针对目标物体位姿识别的问题,本文提出了一种轻量化、高精度、基于点云和神经网络的位姿识别算法。首先从点云中采样若干局部点云。提出了从全局或局部点云中提取关键点的方法,其相对位置不随点云位姿变化。提出了以点到关键点的距离计算得到点特征的方法,该特征同样不随点云位姿变化。提出了基于PointNet点云抽象特征学习模块的、层级化的神经网络模型,以全局、局部点云的无序点集及其点特征为输入,预测得到每个局部点云关键点的物体坐标。其中点特征不随位姿变换的特性以及区别于稀疏格点数据的无序点集数据形式,都简化了输入数据分布,使得神经网络模型得以轻量化;层级化的结构则能应对局部几何相似性造成的歧义。最后,根据关键点的当前坐标和物体坐标的对应关系,通过解析解的方式求出物体位姿。仿真实验表明,该算法能达到大约2~3mm的初始最近点误差,以及经过极少步骤ICP算法后处理后约1mm的误差。通过消融实验证明了层级化网络结构的意义。最终,将该算法分别和已有的神经网络算法在模型大小上,和点对特征匹配算法在精度上进行了对比,证明该算法模型体积更小且精度更高。针对机器人作业的运动规划问题,本文采用了适用于高维问题的、基于采样的运动规划算法。该算法用深度学习中的条件变分自编码器替代了传统的随机均匀采样器。新的采样器通过在成功规划案例形成的数据集中的训练,可以实现在最优路径附近的集中采样。通过设计条件变量,可以将该算法简单地泛化到不同的场景。此外,提出了通过混合概率分布方差不同的采样器、以及采用低分散度的序列化采样器的方法,进一步优化采样算法的收敛能力。在不同的场景中,基于OMPL开源库,进行了算法的模拟实验。通过实验可以发现该算法在规划成功率和路径损失的收敛速度上都优于普通采样算法,对算法的两处改进也有一定效果。
其他文献
蛋白质-蛋白质相互作用(Protein-protein interaction,PPI)是其行使各种生理生化功能的基础,蛋白质互作研究对了解细胞功能的分子机制有着重要意义。目前,已有许多实验方法用于蛋白质互作检测,但实验手段通常费时费力,且实验解析仍停留在少数几种模式生物上。因此,发展一种新的蛋白质互作预测方法,从已有数据中学习蛋白质互作特征,再应用于园艺作物实现跨物种蛋白质互作预测,这无疑将加速
医疗图像分割被广泛地认为是后续医疗图像处理中最重要的一个步骤,能大幅提高医疗诊断的效率和准确性。然而,纯手工的医疗图像标注成本非常高,一方面医疗图像大多是3D的,其标注需要耗费大量的时间资源,另一方面标注需要专业的医生,且其准确率与医生的经验密切相关。随着近几年卷积神经网络的快速发展,自动分割大幅提升了医疗图像分割的效率。然而在实际诊疗应用中,现有自动方法的精度和鲁棒性仍有待提高。为了得到一个更佳
板坯叠轧是目前国内外生产复合板的一种新的制造工艺,具有板材质量高、组织均匀、性能稳定等多种优点,在核电、石油化工、输送管道等领域具有广泛的应用前景。常规情况下采用的大坡口手工电弧焊焊接效率低,人为因素影响大,焊接质量不稳定。因此,采用机器人自动焊接是组坯成形技术规模化应用的必然趋势,而横向窄间隙坡口的多层多道焊道规划是其中一项非常重要的关键技术,目前主要存在以下几个问题:(1)缺乏基体金属支撑造成
全景视频作为传统视频与虚拟现实的结合产物,近年来获得了学术界和产业界的广泛关注。由于全景视频中包含了整个空间场景的画面,其数据量将远高于传统视频,这给全景视频的传输和分发提出了新的挑战。一些研究者针对一对一的全景视频传输场景提出了视区自适应传输模型。这类模型将根据用户的观看视角对全景视频画面的不同区域进行选择性传输,从而降低了全景视频传输的网络带宽需求。然而,对于多个用户的全景视频传输场景,现有的
随着深度卷积神经网络(DNN)在各种计算机视觉任务中的成功应用,人们希望通过设计出更深或更广的网络结构,来超越已有的经典方法,获得更佳的应用效果。绝大部分流行已久的经典卷积网络,都需要依赖数十兆字节的权重存储和数十亿次的浮点运算,才能进行一次前向推理,这使得它们难以广泛部署在资源受限的边缘设备上(例如手机、摄像头等)。量化被认为是满足终端设备对内存苛刻要求的最有效方法之一。然而,大多数量化方法将相
随着近二十年来互联网技术的不断发展,网络攻击的数量不断增长,种类也日益繁多。在近些年来,作为互联网的重要接入点--网页(Web)应用在安全性方面也面临着越来越严峻的挑战。同时,作为机器学习的一个子类--深度学习在最近十年中也有了跨越式的发展。深度学习的方法被广泛应用在Web攻击的检测中。然而这些研究仅仅将关注点放在了如何使用深度学习的方法提高在特定数据集上的检测准确率,而没有深入探究Web应用中产
三维数据有着广泛的应用,比如自动驾驶、机器人、游戏等。和一维信号与二维图像相比,三维数据往往缺乏规则的空间结构并且对旋转鲁棒性有着更高的要求。近年来许多研究这从以上两点出发设计了适合三维数据的深度学习方法,极大地提高了三维数据分析的性能。三维旋转是一种重要的三维数据表达形式,可以更直接地表达三维空间中的相对关系,例如人体骨架关节的旋转,物体在三维空间中的姿态等。相比于点云数据,三维旋转有着独特的群
通道剪枝在卷积神经网络加速中有着广泛的应用,但如今已经遇到了瓶颈,主要源于两处挑战:1)对冗余性准确而直观的测量;2)模型卷积层之间的依赖性使得冗余性动态变化,如何对此建模。为此,本文首先引入了dropout技术,其中包含一个dropout rate的参数,表达了在训练中丢弃通道的概率。考虑到传统dropout难以优化,本文推导出了高斯dropout,使得dropout rate可以在贝叶斯框架下
随着无线通信技术的发展,无线设备的数量也在急剧增加。第五代移动通信技术采用认知无线电技术和新的多址接入技术等方法来提升无线系统的频谱利用效率。然而,射频干扰攻击会对通信系统的可用性造成严重破坏。干扰器通过发射非法信号,可以阻止合法节点接入通信网络,也可以干扰进行中的通信,降低节点的通信速率。如何在新的通信环境下防御射频干扰攻击就成为了一个亟须解决的课题。以Q-learning为代表的强化学习算法具
为了应对近年来深度卷积神经网络(CNNs)对于计算和存储需求的快速增长,研究人员提出了多种方法来实现模型压缩与加速,其中包括低秩分解,网络剪枝,权重量化,神经网络结构搜索和知识蒸馏等。在上述方法中,基于网络剪枝的算法通常能够在易用性和压缩加速性能之间取得良好的折中,因此格外受研究人员青睐。尽管现有的网络剪枝算法在一些特定的深度学习任务上展现出了不俗的压缩加速性能,这些算法在更广泛的实际应用场景中或