【摘 要】
:
质子交换膜燃料电池是具有光明应用前景的新型能源动力装置,但耐久性、性能及成本仍影响其商业化应用。除了研发耐久性好、性能高、成本低的新型催化剂及其他部件,设计新的PEMFCs流场结构以改变气体分配均匀性之外,还可以通过预后和健康管理技术来监测FC的健康状况,根据SOH做出相应的维护,从而达到延长电池寿命并降低使用成本的目的。本文对1组膜电极(MEA1)进行寿命测试,其中1号膜电极进行恒负载工况实际测
论文部分内容阅读
质子交换膜燃料电池是具有光明应用前景的新型能源动力装置,但耐久性、性能及成本仍影响其商业化应用。除了研发耐久性好、性能高、成本低的新型催化剂及其他部件,设计新的PEMFCs流场结构以改变气体分配均匀性之外,还可以通过预后和健康管理技术来监测FC的健康状况,根据SOH做出相应的维护,从而达到延长电池寿命并降低使用成本的目的。本文对1组膜电极(MEA1)进行寿命测试,其中1号膜电极进行恒负载工况实际测试,2号膜电极(MEA2)进行快速测试(其中基准电流工况下停留的时间为90秒),3号膜电极(MEA3)也进行快速测试(其中基准电流工况下停留的时间为240秒),同时利用粒子滤波方法,对2号和3号膜电极的测试数据进行滤波处理,消除系统误差及随机误差等因素的影响,获得寿命预测模型。本文可以得出以下结论:(1)在膜电极快速测试方法中,测试系统的动态响应难以满足负载的动态变化要求,容易引起系统误差,该误差与其他随机误差、人为误差等共同作用,可导致寿命预测产生较大的误差。例如以电压衰减10%计,实测值为6142h,预测值为1636h和3575h,相对误差为73.3%和41.8%。MEA2误差大是因为在基准电流下仅停留90s根本不足以使电池达到基本稳定,电压值与相同工况稳态下的电压值相差较远,此时的电压值完全无法反应电池的真实健康状况,这是导致最终预测结果误差很大的关键原因。MEA3将停留时间增加到了240s,这大大提高了预测的精度,降低了误差。(2)利用粒子滤波对快速测试的数据进行处理可有效消除或一定程度上减小各种误差的影响,使得寿命预测值和实测值接近,例如以电压衰减10%计,实测值为6142h,预测值为3385h和6776h,相对误差为44.9%和10.3%。其中对于MEA2而言,由于快速测试的数据误差过大,粒子滤波算法也无法完全消除其误差。(3)MEAs在其整个使用寿命期间的电压退化不是线性的,在接近终了时段,性能衰退速度显著加快。快速测试方法中以线性衰退率预测膜电极寿命,也必然产生一定的误差,因此,为了更有效、更准确地预测生态环境寿命,需要进一步研究改进膜电极寿命的快速评价方法。
其他文献
近年来,聚偏氟乙烯(PVDF)以其高机械性能、化学稳定性和热稳定性等特点而被广泛用于水处理膜材料。但是,其高疏水性会使分离膜进行水处理时遇到两个重要的问题:一方面,水在穿过疏水性PVDF膜时需要较大的跨膜液压,这不仅会消耗更多的能量,还会降低膜的使用寿命;另一方面,疏水的PVDF膜会使一些有机物质和胶体物质沉积在膜表面,造成污染,导致水通量的急剧下降,影响膜的效率。因此,需对PVDF膜进行亲水化改
近年来,温室效应和能源问题的加剧使人们对高效储能和低能耗设备的需求日益增加,例如超级电容器、可充电锂离子电池、染料敏化太阳能电池和电致变色(EC)设备等等。电致变色设备(ECD)由于具有低功耗、高着色效率和短切换时间等诸多优势而被广泛应用于节能建筑、低功耗显示器和电子皮肤等智能显示窗中。作为电致变色器件离子传输层的电解质和电致变色层的电致变色材料是两个至关重要的组成部分,对电致变色器件的性能起着决
周围神经缺损后的再生和功能恢复一直是神经科学领域的重要课题。因损伤导致的神经缺损治疗手段有限,目前提高修复效果的方法集中在改善导管内的再生微环境,即研制出能够提供生物活性因子的组织工程神经(Tissue-engineered nerve grafts,TENGs)。温敏性聚氨基酸水凝胶作为一种优良的药物缓释载体,不仅具有较好的生物相容性,而且还具有独立的药物负载及缓释方式,不依赖于导管的结构。因此
金属卤化物钙钛矿太阳能电池由于其较高的能量转换效率(power conversion efficiencies PCE)以及相对简单和低成本的加工路线,已脱颖而出成为下一代太阳能电池的核心光吸收材料。考虑到金属卤化物钙钛矿可以在相对较低的温度下处理,快速成核和结晶,有可能会出现大量的晶体缺陷,包括晶体内部的面缺陷和点缺陷。在更传统的光伏材料(如硅和碲化镉)中,层错、孪晶和位错等晶体缺陷,往往导致少
前交叉韧带(ACL)损伤会严重影响人们的日常生活和运动员的职业生涯。临床上重建ACL的方式主要包括自体移植、同种异体移植和人工韧带移植,但采取前两种方式会面临供区病损、免疫排斥和感染疾病等风险。目前,临床上重建ACL最有效的人工韧带产品是由聚对苯二甲酸乙二醇酯(PET)材料编织而成的LARS人工韧带,具有良好的力学性能和生物相容性,但由于PET是一种惰性材料,其表面缺乏成骨活性,影响了其治疗效果。
由热固性聚酰亚胺制成的高温聚合物基复合材料(PMC)具有较强的热氧稳定性、可加工性和优良的力学性能,在航空航天方向得到了广泛应用,是一个重要的发展方向。玻璃纤维增强聚酰亚胺基复合材料(FPM)长期使用温度230℃,综合成本低,比强度和比刚度高,能够代替一些金属部件来减轻重量。然而,由于其耐磨性差、抗氧化性差、工作温度较低,严重限制了其广泛应用。通过热喷涂沉积涂层可以有效提升FPM的热性能和物理性能
心血管疾病严重威胁现代人的健康,目前,将组织工程治疗方法引入到心血管疾病的治疗中被认为是最有前景的方案之一。组织工程(Tissue engineering)支架材料的首选是天然高分子材料,其中纤维素是一种具有晶体结构的多糖,是地球上含量最丰富的天然高分子,且具有可再生、生物可降解及优异的生物相容性等特点,在组织工程领域中具有广阔的应用前景。由2,2,6,6-四甲基哌啶-1-氧自由基(TEMPO)氧
环氧树脂(EP)作为一类典型热固性树脂,通过与固化剂之间的反应形成交联网络后被赋予不同于其他热固性树脂的独特优势,因此环氧树脂被广泛的应用于涂料、电子器件、胶黏剂等领域。然而作为聚合物,易燃的特性限制了其进一步应用。因此为了顺应环保的时代要求并力求减少阻燃剂对其综合性能的影响,设计合成出新型无卤阻燃剂成为阻燃环氧树脂研究的重要方向。本文首先设计合成了一种含P/N/S杂环类阻燃剂TAP,将其作为添加
伴随着各种便携式电子设备的出现以及电动汽车的应用,人们迫切地需要开发出具有更高能量密度的电池。锂硫(Li-S)电池由于其具有较高的理论容量(1675 m A h·g-1)和可观的能量密度(2600 W h·kg-1)而逐渐受到人们的关注。并且单质硫在自然界中储量丰富,价格便宜,同时它无毒无害的优点顺应当今友好型社会发展的理念。然而,Li-S电池中存在体积变化和S/Li2S导电性差的问题,并且多硫化
人类对于高能量密度的可充电电池系统的需求随着社会的快速发展与日俱增。金属锂负极因具有最低的电化学电势(-3.04 V vs标准氢电极)和极高的理论比容量(3860 mAh g-1)而备受关注,但存在库伦效率低、循环寿命短、安全隐患大等诸多问题严重限制了其实际应用。为了改善金属锂负极的电化学性能、遏制安全隐患,本论文以棉花为原料,制备出Ag修饰的亲锂性三维碳纤维材料(Ag-CFs),分别利用辊压法和