【摘 要】
:
过渡金属碳化物具有熔点高、硬度高、热力学稳定性好、耐酸碱腐蚀等一系列优点,它不仅保留了金属基体的电磁特性,又克服了金属基体熔点、沸点低的缺点,被广泛应用于各种耐高温、耐摩擦、耐化学腐蚀等领域。然而过渡金属碳化物单独使用时通常具有脆性大、易出现裂纹等不足,并且其作为增强相添加到金属材料中时,金属相和碳化物陶瓷相间润湿性较差。为了克服碳化物在使用中遇到的难题,本论文采用NbC作为陶瓷相,以低熔点金属(
论文部分内容阅读
过渡金属碳化物具有熔点高、硬度高、热力学稳定性好、耐酸碱腐蚀等一系列优点,它不仅保留了金属基体的电磁特性,又克服了金属基体熔点、沸点低的缺点,被广泛应用于各种耐高温、耐摩擦、耐化学腐蚀等领域。然而过渡金属碳化物单独使用时通常具有脆性大、易出现裂纹等不足,并且其作为增强相添加到金属材料中时,金属相和碳化物陶瓷相间润湿性较差。为了克服碳化物在使用中遇到的难题,本论文采用NbC作为陶瓷相,以低熔点金属(Sn)、高熔点金属(Fe)、金属间化合物(Nb5Si3)分别作为金属相与NbC组成金属-碳化铌复合材料。本文采用熔盐电化学的方法,以CaCl2-NaCl混合熔盐作为电解液,将金属氧化物和碳粉球磨混合后压片、烧结作为阴极,石墨棒为阳极,在熔盐中直接电解制备了 NbC-Sn、NbC-Fe、NbC-Nb5Si3等多种复合材料,并对其合成机理和反应历程进行了深入研究,考察了不同工艺参数对产物的影响。主要研究结果如下:(1)以Nb2O5和碳粉为原料,在900℃混合熔盐中,控制工作电压为3.0 V,电解11 h制备出粒径约100 nm的NbC颗粒,测得样品的堆积密度为6.07 g/cm3。(2)为了避免在NbC制备过程中颗粒间的团聚,实验中引入一种能和酸反应,并且不与NbC反应的金属Sn,成功制备出颗粒分散、尺寸均一的NbC纳米颗粒。由于Sn的熔点只有232℃,所以在电解过程中Sn处于液态,在Nb2O5粉末和碳粉间具有流动性。控制3.0 V电压,熔盐中电解12 h,可以得到NbC-Sn复合材料,并用质量分数为18%盐酸多次洗涤,脱除掉Sn,可以得到颗粒分散、尺寸均一的NbC纳米颗粒。(3)以Fe2O3、Nb2O5和碳粉为原料,在900℃温度下,电解10 h,可以得到核-壳结构的NbC-Fe复合材料。该复合材料以NbC颗粒作为核芯,Fe作为金属外壳组成,每个复合颗粒直径约100 nm。将该复合材料添加到20号钢中,重新熔炼。对重熔后的钢进行SEM、金相和硬度分析发现,相比于NbC颗粒,核-壳结构的NbC-Fe复合材料在钢中的润湿性和分散性都显著提高。实验结果表明,核-壳结构的NbC-Fe颗粒加入到钢中可以起到细化晶粒的作用,添加NbC-Fe颗粒的钢相比没有添加NbC-Fe颗粒的钢晶粒缩小了一半,而且NbC-Fe颗粒的添加有效提高钢的硬度。(4)利用熔盐电化学的方法制备NbC-Nb5Si3复合材料。实验结果表明,在900℃熔盐温度下,Nb/Si摩尔比大于1.67时,产物中会有α-Nb5Si3和γ-Nb5Si3两种晶体结构的Nb5Si3生成;配料中Nb/Si摩尔比小于1.67时,产物中只有α-Nb5Si3生成。多核-壳结构的NbC-Nb5Si3复合颗粒是由四至五个NbC颗粒作为核芯,Nb5Si3作为金属壳组成。原位生成方式得到的核-壳结构复合材料结构更加稳定,并且避免了金属相和陶瓷相复合过程中界面污染问题。
其他文献
具有形变诱发相变行为的内生非晶复合材料因其优异的性能和广泛的应用前景而倍受关注。内生CuZr基非晶复合材料作为其重要的一员,其中的亚稳CuZr相在受力条件下能够发生B2到B19’马氏体相变,从而获得良好的塑性变形能力和加工硬化能力。但是形变诱发相变行为的动力学特征及其对复合材料变形的作用机理目前尚不清楚。中子衍射技术在原位研究材料的变形行为等方面具有很强的优势,特别是中子极强的穿透能力可以获得外部
铝硅合金由于在工业上的广泛而重要的应用而备受关注。但长久以来对铝硅合金的晶体学表征手段主要限制在纳米尺度的透射电子显微镜(TEM)上,这是因为铝硅合金内α-Al和Si两相的晶体学结构相似,使得扫描电子显微镜(SEM)下的电子背散射衍射(EBSD)技术难以进行,极大地制约了在微观范围内对铝硅合金的进一步认识。为此,论文采用SEM/EBSD技术研究了未变质和Sr变质共晶铝硅合金中共晶Si晶体的生长特点
中高温压力容器用钢广泛地应用于石油、化工等国民经济重要领域,随着国民经济的快速增长,其需求量正在不断的上升。12Cr2Mo1钢是一种典型的中高温容器钢。采用12Cr2Mo1钢制造的容器配件,除具有较高的强度、良好的韧性和焊接性能外,还具有良好的加工使用性能和高温持久强度,确保长期服役的安全性。12Cr2Mo1钢板的生产工艺为常规热轧+正火+高温回火。针对生产工序长导致的效率低和成本高的实际问题,南
铁电/半导体异质结在光伏、储能、信息存储等下一代新型多功能器件中均表现出了潜在的应用前景。尤其是随着信息技术的高速发展,具有非破坏性的、快速的数据读写、高存储密度、低能耗以及高的循环次数、稳定性的铁电阻变存储器备受关注。目前普遍认为铁电/半导体异质结中的阻变行为是基于铁电极化对耗尽层宽度、势垒高度等异质结界面属性的调控实现的。但是在异质结界面附近,由于铁电极化的不连续、晶格失配、缺陷富集等多种因素
7X50型超高强铝合金固溶淬火并时效处理后具有高比强度、高比刚度、韧性好、耐腐蚀等优点,常以大截面尺寸产品在航空航天、交通运输及武器装备等领域作为轻质高强结构材料广泛使用。随着航空航天领域所用结构件逐渐向大型化、整体化方向发展,产品的截面尺寸不断增加。由于该合金优异的综合性能与其析出特点密不可分,而固溶处理后的淬火冷却过程直接影响合金的析出特点,因此该过程是决定7X50型铝合金大截面尺寸产品性能的
在镁合金结构(零)件的使用过程中,表面不可避免地会产生腐蚀、磨损等局部损伤,严重影响了其性能和使用寿命。堆焊作为一种表面熔覆技术,可对受损的镁合金装备进行有效且快速的修复,对于缩短维修周期、延长零件的使用寿命等具有重要的意义。然而,镁合金堆焊后的力学性能和耐腐蚀性能通常不够理想,严重制约了镁合金堆焊技术的发展。除堆焊以外,在生产的过程中也不可避免地需要对镁合金进行对焊等焊接生产。作为焊接填充材料,
镍基时效强化型GH4202合金系制造新型大推力液氧煤油高压补燃火箭发动机的重要金属材料。为实现减重、增推、提高稳定性,采用机械钻孔+轧制工艺生产的外径/内径比为1.13的薄壁GH4202合金无缝钢管,满足了发动机设计定型和试车的需要。但该工艺金属利用率低,批量小,成为该型发动机生产的瓶颈,其原因在于国内在镍基时效强化型高温合金荒管的挤压成形及微观组织控制方面的研究甚少。本文以GH4202合金为研究
随着航空航天、国防工业、生物工程技术及现代医学的发展,对特征尺寸在微米级到毫米级、采用多种材料、且具有一定形状精度和表面质量要求的精密三维微小零件的需求日益迫切。微小零件的生产主要依赖于微机械加工技术,而微机械加工中所涉及到微刀具、微磨具和微细工具电极的尺寸一般都在1mm以下,且尺寸越小制备难度越大。因此微刀具、微磨具和微细工具电极的成功制备是微机械加工技术实现微小零件及微槽、微孔等微结构加工的至
岩爆是高地应力环境下地下工程开挖过程中常见的一种动力失稳灾害,其具体表现为围岩突发猛烈弹射或抛掷到开挖空间,直接威胁施工人员、设备的安全,已成为世界性的地下工程难题之一。由于岩爆发生机制较为复杂且影响因素众多,岩爆的预测与预警技术尚不能完全满足工程实践要求。因此,开展岩爆灾害的影响因素及其对应的物理效应实验研究,获取不同条件下岩爆过程声发射-红外辐射特征、规律与机制,为岩爆预警与防控奠定实验和理论
稀土发光材料因其优点显著,被广泛地应用于电光源照明、电视机显色材料、农用光转换材料、X射线荧光粉、发光涂料及发光油墨等。我国稀土资源丰富且品种多样,但应用技术在竞争中处于劣势,出口以原材料和粗加工产品为主,进口则以半成品以及高技术产品为主。近年来,我国加大了对稀土功能材料的研究、开发与应用,但仍与世界先进水平有一定差距。荧光粉的发光性能受制备方法的影响较大,因此改进荧光粉性能的重要手段之一是选择合