论文部分内容阅读
众所周知,涂料里面的颜填料在外界环境的影响下,会失去鲜艳的颜色,出现变色或是褪色现象,需要重新修补,无形中增加了人们的负担和成本。实际上人们可以通过微胶囊技术进行自修复,保护颜填料,减小了环境对颜填料的影响,节约成本,大大增加了有色涂料的使用寿命和使用范围。若将变色材料进行微胶囊化,制作变色涂料,还可以进一步拓展有色涂料的使用范围,丰富人们的生活。本文在制备热致可逆变色环氧树脂涂料时,先将结晶紫内酯,双酚A和癸酸双酯,三者按一定比例进行复配,制备成热致可逆变色囊芯材料。为了得到颜色较深的囊芯材料复配物,通过紫外分光光度计探究三者用量配比,最佳比例为n结晶紫内酯:n双酚A:n癸酸双酯=1:2:25。再将囊芯材料用十二烷基硫酸钠和苯乙烯-马来酸酐大分子乳化剂进行乳化,加入单体苯乙烯和交联剂二乙烯基苯,在引发剂偶氮二异丁氰(AIBN)的作用下,进行原位聚合,形成壳壁包裹囊芯材料,得到可逆变色微胶囊乳液。所制备的微胶囊乳液在0 ℃呈现蓝色,温度升高,蓝色变浅,70℃时为乳白色。经过50次反复升温和降温,颜色规律性变化,有良好的热致可逆变色性。本实验通过红外光谱基本确定合成的苯乙烯-马来酸酐大分子乳化剂的结构,使用粒度分析仪和透反射显微镜表征微胶囊乳液的粒径及其分布,选用差式扫描量热仪(DSC)探究微胶囊囊壁性能,最后系统性测试乳液的稳定性。结果表明微胶囊乳液反应温度在80℃,引发剂用量为单体质量的0.7%,囊壁与囊芯材料投料比(质量比)为2:1时,DSC测试的微胶囊中囊芯材料的起始结晶温度最低,为4℃,所得微胶囊囊壁性能最佳。乳化剂用量在0.02mol/L,反应转速在1200r/min时,微胶囊乳液得到的平均粒径最小,为1545nm。同时大分子乳化剂用量为囊芯材料质量的4%,微胶囊乳液固含量在10-30%时,可以得到稳定性良好的微胶囊乳液。其次微胶囊乳液与环氧树脂乳液二者进行混合,可得到可逆变色环氧树脂乳液,加入助料助剂可得到变色涂料。首先采用聚乙二醇(PEG)改性环氧树脂,让改性后的环氧树脂(PME)再乳化环氧树脂和微胶囊乳液,得到稳定的可逆变色环氧树脂乳液。最后将该乳液加入固化剂和其他助剂,制备成可逆变色环氧树脂涂料。制备的可逆变色涂料在50次反复升温和降温过程中,漆膜颜色由蓝色(0℃)变成无色(70 ℃),呈现规律变化,有良好的热致可逆变色性能。之后利用傅立叶变换红外光谱(FTIR)确定了 PME的结构,使用旋转粘度计和粒度分析仪表征微胶囊乳液对可逆变色环氧乳液粘度、粒径及其分布的影响。通过附着力试验仪、弹性试验仪、镜向光泽度仪、摆式硬度计、盐雾试验箱和紫外光老化试验箱分别对涂料漆膜附着力、弹性、光泽度、硬度和防腐性能进行测试。结果表明分别用分子量为4000,6000和10000的PEG改性环氧树脂E44,所得的PME44可以乳化E44,且用量(wt.%)需在9.7%以上。同时分别用分子量为4000,6000的PEG来改性环氧树脂E20,PME20可以乳化E20,用量(wt.%)需在14.55%以上。PME用量的增加同时会影响可逆变色环氧树脂涂料漆膜的性能,漆膜的附着力和耐腐蚀性都会降低,因而PME的用量(wt.%)一般控制在19.4%以下。当微胶囊乳液粒径大于纯环氧树脂乳液粒径时,二者被PME乳化后,随着微胶囊乳液用量增加,可逆变色环氧树脂乳液的粒径增大、分布增大。若微胶囊乳液粒径小于纯环氧树脂乳液粒径,增加微胶囊乳液用量,可逆变色环氧树脂乳液粒径减小、分布增大。在二者粒径接近时,微胶囊乳液用量对可逆变色环氧树脂乳液粒径及分布影响不大。同时,微胶囊乳液用量增加,可逆变色环氧树脂乳液稳定性和粘度降低,可逆变色环氧树脂涂料漆膜的光泽度,附着力,弹性,耐磨损性和耐腐蚀性能降低。所以微胶囊乳液的用量(wt.%)应控制在15%以下。实验所用的三种常温固化剂:四乙烯五胺,环己二胺和W60,其中使用环己二胺固化得到的漆膜在性能上最佳。总体上环氧树脂E20制备的涂料在漆膜光泽度,硬度,耐盐雾性能和耐老化性能上都要优于环氧树脂E44。本课题合成的热致可逆变色环氧树脂涂料,属水性环氧树脂涂料,具有安全,环保和有一定防腐能力,表现出可逆颜色的变化,拓宽了水性环氧树脂涂料的应用范围。对探究微胶囊乳液的合成,拓展水性环氧树脂涂料的应用,具有一定的指导意义。