论文部分内容阅读
在直流电缆系统中,附件稳态运行时,绝缘结构中场强分布与材料体积电导率成反比,在XLPE绝缘高压直流电缆终端中,硅橡胶增强绝缘的电导率小于电缆XLPE绝缘,以普通硅橡胶为增强绝缘的高压直流电缆终端中的高电场强度区域位于硅橡胶增强绝缘内,通常情况下高压直流电缆XLPE绝缘的击穿强度远大于硅橡胶绝缘,因而以普通硅橡胶为增强绝缘的XLPE绝缘高压直流电缆终端内的电场分布不合理,目前已有研究表明,采用具有非线性电导特性的增强绝缘材料可以很好的解决这一问题。由于电缆长期运行在高压直流电场下导致绝缘材料整体绝缘强度降低,极易引起附件绝缘被击穿,进而降低高压直流电缆运行的稳定性,危及整个输电系统的正常供电。所以,绝缘材料的耐电老化能力是决定电缆附件整体绝缘能力的一个重要因素。本文以固体硅橡胶为基体,纳米石墨和纳米炭黑为填料制成具有非线性电导特性的硅橡胶纳米复合材料,并以该材料和纯硅橡胶为对象进行电老化实验,分别测试了未老化和老化时间为720h、1440h及2160h后纯硅橡胶与硅橡胶纳米复合材料的电导特性、直流击穿特性和空间电荷特性,分析不同老化时间后纯硅橡胶和硅橡胶纳米复合材料电气性能的变化,并进行比较。研究结果表明:在电老化过程中,硅橡胶纳米复合材料与纯硅橡胶经过相同的老化时间作用后,两种材料在30℃、50℃和70℃测试温度下电导率均随老化时间的增加而呈上升的趋势,增长程度相近,并且随着测试温度的增加,硅橡胶纳米复合材料与纯硅橡胶的电导率均增大。两种材料在30℃、50℃和70℃测试温度下击穿场强随老化时间的增加均呈下降趋势,下降趋势基本相同,并且随着测试温度的增加,硅橡胶纳米复合材料与纯硅橡胶的击穿场强均减小。两种材料内部积聚的空间电荷量随着老化时间的增加均呈上升趋势,上升趋势基本相同,且在相同老化时间后,硅橡胶纳米复合材料试样内部积聚的空间电荷量小于纯硅橡胶。通过上述实验可知,纳米复合硅橡胶具有与纯硅橡胶相近的耐电老化性能。