论文部分内容阅读
现代加工业的飞速发展,对工具、模具涂层的性能提出越来越高的要求,传统的TiN、TiC等单层膜不能应用于苛刻的工作条件,薄膜的多层化是改善其性能的有效途径之一。本文首先利用离子束辅助中频溅射制备了TiN单层膜,通过正交实验及极差分析研究了离子束辅助中频溅射工艺对TiN膜成膜速率、表面形貌、硬度和膜/基结合力的影响,确定了TiN单层膜的优化沉积工艺;探讨了反应气体的持续供给和脉冲供给对膜层表面形貌及性能的影响,研究了在脉冲供给氮气时氮气流量对Ti/TiN多层膜成膜速率和性能的影响;研究了不同调制周期和调制比的Ti/TiN多层膜性能。结果表明:在沉积TiN薄膜时,提高靶功率和降低氮气流量有利于抑制靶中毒现象,从而改善TiN薄膜的表面形貌。当靶功率和氮气流量较高且离子流较低时,制备的TiN膜硬度较高。当靶功率较低而氮气流量较高时,不容易获得膜/基结合力较好的膜层。当靶功率为9KW、氮气流量为35sccm、离子流为4A、温度为150℃时,制备的TiN薄膜的表面形貌、硬度、膜/基结合力较好,膜层硬度达到HV2319,膜/基结合力为7.5N。与氮气的持续供给相比,在脉冲供给氮气时制备的Ti/TiN多层膜表面形貌好,膜/基结合强度高,但显微硬度低于持续送气时获得的TiN膜。通过适当提高脉冲送气时的氮气流量可以在保持高的膜/基结合力情况下使膜层硬度显著提高。采用脉冲方式送气,氮气流量为90sccm时,膜层硬度可达HV1767,膜/基结合力达到18N。Ti/TiN多层膜的硬度及膜/基结合力随着调制周期的增大呈现出逐渐降低的趋势。Ti/TiN多层膜的性能随着调制比(在一个沉积周期内TiN与Ti的沉积时间比)的增大逐渐提高。在调制周期为9.45nm、调制比为5︰1时硬度为HV1813,而其膜/基结合力(22N)为TiN单层膜的两倍以上。