手机终端多天线系统的研究

来源 :南京信息工程大学 | 被引量 : 0次 | 上传用户:hanqingnan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为适应现代通信设备的需求,天线的研发主要朝着几个方面进行,即减小尺寸、宽带和多波段工作、智能方向图控制。随着电子设备集成度的提高,通信设备的体积也越来越小,这时天线对于整个设备就显的过大,这就需要天线减小自身尺寸。然而,在不明显影响天线的增益和效率的同时减小天线的尺寸却是一项艰巨的工作。电子设备集成度提高,经常需要一个天线在较宽的频率范围内来支持两个或更多的无线服务。本文基于功率传输最大化方法的天线设计方法,设计了一款覆盖Sub-6GHz中的3300MHz-3500MHz的小型八单元MIMO-智能手机天线阵列。其次设计了一款覆盖Sub-6GHz中的N78频段(3300MHz-3800MHz)的八单元智能天线。同时对SAR值的减少进行了研究。本文的主要研究内容有:1.首先设计了一款小型八单元MIMO-智能手机阵列天线,该天线阵工作在Sub-6G中的3.3-3.5GHz,由八个共用接地点的三维倒F天线单元组成,利用弯折技术减小天线尺寸,天线单元仅为5mmx5mmx5mm。通过共用接地点的中和作用以及地面上加载的T型槽,使天线单元间距在小于2mm的情况下实现互耦小于-10d B。利用最大功率传输效率法(MMPTE)获得阵列天线的最优激励分布。再利用连接各个天线单元的数字移相器和衰减器实现最优激励分布,让波束偏转到指定方向。整个天线印刷在FR4基板上,占用体积小,在3.3-3.5GHz内S参数<-10d B。实测结果与仿真结果吻合较好。2.其次设计了一款工作于N78频段(3300MHz-3800MHz)的八单元智能天线。天线单元尺寸为6.5mmx6.5mmx8mm。天线阵列在x、y、z方向上的方向图分别能够达到2.9d B、7.9d B和5.3d B。应用加权的最大功率传输效率法(WMMPTE),引入多个接收天线,引导天线阵列的方向图,优化近场电场分布,最终降低了SAR值约30%。
其他文献
在智能化普及的今天,语音通信的应用极为广泛,语音信号处理技术不断被更新和推进。语音信号处理对语音的质量有着较高的要求,然而语音拾取设备收集到的语音却经常夹杂着大量噪声,严重影响了原始语音的清晰度和可懂度,必须寻找有效方法消除噪声以获得所需的语音,因此,语音增强技术的重要性就显得尤为突出。单通道语音增强方法具有原理简单、对硬件要求低、易于实现等优点,但对移动声源拾取到的信号信噪比较低。麦克风阵列语音
近年来,有源噪声控制(Active Noise Control,ANC)被广泛应用于日常生活和工业生产等多种场合。随着研究的深入,呈现出越来越多的ANC问题。例如,反馈有源噪声控制系统由于自身结构缺陷不可避免地存在水床效应,要想取得较好的降噪效果必须减少因水床效应引起的噪声放大量,而现有的调节水床效应的自适应算法多存在计算量复杂或低频降噪量较小等问题;多通道有源噪声控制系统的运算量是制约多通道系统
随着下一代无线通信系统在通信速率、容量方面的大幅提升,毫米波天线对性能设计提出了新的挑战,如何实现低成本、可重构、高增益、高效率、宽带宽的毫米波天线是目前亟需解决的问题。介质谐振器天线(DRA)因其极低的欧姆损耗,较高的辐射效率(一般能达到90%以上)和较低的成本,成为了毫米波天线设计的选择方案之一。然而DRA还需要同时解决带宽、增益以及可重构的问题,基于此本文主要针对于宽带、高增益的可重构DRA
雨情识别技术一直以来都是气象水文领域的研究热点之一,随着人工智能技术的发展,信号识别算法的高关注度为实现创新有效的雨情识别提供可能。雨声信号的变化可反演雨情的发展及消散过程,对及时预警防灾减灾具有重要意义。为了识别降雨情况,本文设计了一种基于声音信号的雨情识别系统。本系统采用带外壳的雨声采集器,所获雨声信号段共计1500个,其中小雨(0.1~9.9mm)、中雨(10~24.9mm)和大雨(25~4
微带天线具有低轮廓、轻质量、低成本和易于与微波电路集成等优点,其被广泛地应用在雷达、卫星等无线通信领域。随着无线通信技术的不断进步,通信设备朝着小型化、集成化、宽带化和智能化的方向不断发展,微带天线的窄带特性限制了它在众多需要宽频带情况下的应用。微带窄缝隙天线作为微带天线的一种,不仅拥有传统微带天线的优点,同时也易于与其他物体共形,同样面临带宽较窄的问题。为此科研人员做了大量的研究工作。本文共设计
正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)是最优秀和发展前景的调制技术,已经被大多数无线和有线通信标准所采用。OFDM具有一系列的优点,首先频谱的利用率高并具有抗频率选择性衰落能力,还可以消除符号间的干扰,能够恢复由于信道的频率选择性而丢失的符号从而具有一定的纠错能力,信道均衡和计算效率较高。但是OFDM系统也有一系列的缺点,对同
随着卫星导航、通信等领域的迅猛发展,无线系统抗干扰能力受到国内外学者的广泛关注。其中,调零天线是抑制定向电磁干扰的重要手段。调零天线包括单元调零天线和阵列调零天线。本文利用功率传输效率最优化理论来研究阵列调零天线相关问题,提出了在多个目标方位实现多零陷的阵列调零天线。本文的主要研究内容包括:1、首先,设计了一款工作在2.45GHz的一维调零阵列天线。一维阵列天线由8个矩形贴片天线单元线形排列构成。
随着我国“空天一体化”战略的不断推进,卫星通信的作用和地位不断被强化。传统的卫星通信系统通常采用有中心的管理调度方式,地球站入网、退网、业务申请、资源分配等都通过统一的中心站进行管理调度,这种方式可以最大化地利用卫星通信资源,但是这种典型的集中式管理体制也带了较大的风险,由于中心站负责承担系统的控制、调度和管理等功能,系统对其依赖性极强,导致中心站造价成本高昂、移动性差。在军事对抗环境下,作为系统
微带平面阵列天线以成本低、体积小、重量轻等优势,在无线卫星通信、导弹制导和船舶导航等应用场景获得了广泛的使用。X波段也是军用火控雷达、广播卫星通讯、船舶导航和气象雷达的常用频段。以船舶导航为例,随着捕鱼及航海的不断发展,我国对小型渔船的需求量逐年递增,天线也呈现出小型化和低成本的发展趋势。因此本文主要针对X波段微带平面阵列天线进行了研究与设计,论文主要研究内容包含以下几个部分:(1)基于天线极化理
圆极化天线可以接收多种极化形式的来波,同时圆极化波束能被多种极化形式的天线所接受;而极化可重构天线在这一方面相比于圆极化天线的优势更加明显。微带贴片天线具有小体积,低成本,易于加工,牢固可靠等优点,被广泛应用于载体共形等方面,同时因为其多样化的性能以及能和有源器件及电路相集成的特点,是一种非常重要的天线形式;同时相比于单个天线,阵列天线具有提高辐射的增益,消除共信道的干扰等优点,因此微带阵列天线因