论文部分内容阅读
随着科学技术的进步,人们对流体的性质及运动规律的研究不断深入。但是由于流体运动的极度复杂,对于实际工程中大量存在的边界形状复杂的区段内的流动,鉴于其复杂性和测量困难性,物理模型试验具有局限性,实验往往只能给出总流的参数,而数值模拟则能给出相关流场的具体信息。正是因为数值模拟具有较多的优点,渐已成为研究流体力学强有力的手段。 对水流进行数值模拟的一个有效工具是FLUENT,将其应用于流体力学进行数值模拟,可以方便地计算出各项水流参数的全场分布,具有计算快速、简捷、方便,数值精度较高等优点,而且由于它具有从不可压到可压、层流、湍流等很大范围的模拟能力,实用性较强。 本文分别对各种雷诺数来流条件下的突扩分离流、洞塞消能模型以及三维管流应用FLUENT进行了数值模拟研究。论文主要由四部分组成。 论文的第一部分介绍了FLUENT基本理论及应用,对它的网格适用、可以计算的物理问题类型、边界条件、湍流模型、求解器加以说明。 论文的第二部分对雷诺数较小的情况下的突扩分离流动进行了研究,并与已有数据进行比较,显示了流线、涡线和速度分布。 论文的第三部分对新型消能工洞塞消能进行数值模拟,取得与已有数据相近的结果。 最后,进一步模拟了大雷诺数湍流来流条件下的突扩分离流和三维管流,验证FLUENT的广泛的适用范围。