基于深度学习的人体姿态估计技术研究

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:wwqq1200
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
这几年来,计算机视觉相关技术飞速发展。人体姿态估计作为研究人类运动的基本方法,成为众多学者们研究的热点。其主要任务是在图像中检测出人体关节和关键部位的坐标位置,从而得到人体局部或全部的肢体信息,以此来判断人体的行为。随着深度学习相关技术的快速迭代,基于卷积神经网络的人体姿态估计研究也取得了巨大的进步。基于自动特征提取的的深度学习方式已经能够替代传统的手工特征提取来实现输入端到任务端的点对点优化,当前基于深度学习卷积神经网络的方式已经成为了人体姿态估计中的主流方法,但目前仍有关键问题没有解决。一方面,现有的研究工作主要关注如何提升人体姿态估计方法的准确度,设计出越来越复杂的网络模型,却忽视了深度学习网络在精度与速度之间的平衡,导致现有的方法无法在实际场景中应用。另一方面,先前的方法虽然意识到尺度问题在人体姿态估计任务中的重要性,并提出一系列多尺度的特征融合的方法来提升人体姿态估计的性能,但多尺度特征融合的方法使模型越来越复杂,效率越来越低。为了解决这两个重要的问题,本文分别从高效的网络架构设计、高效的尺度表示这两个角度展开研究工作,主要工作及贡献如下:本文将对目前主流网络进行详细的讨论,分析出优缺点,并说明当前的人体姿态估计方法普遍注重于设计出高分辨率特征网络,如维持高分辨率特征、高分辨率特征恢复和高分辨特征跨级连接等。虽然高分辨率使得人体姿态估计的方法带来了提升,但也引起了计算量的大幅增加。本文通过实验证实高分辨率特征带来的微小的提升,与其大量增加的计算量相比是“不值当”的。为此,本文提出快速人体姿态估计网络,采用网络中的低分辨率特征进行姿态估计,在大幅度减少计算量的同时保持了模型原本的性能。另外,针对目前的人体姿态估计方法专注于多尺度融合使得网络更加复杂的难题,本文进一步深入挖掘现有算法网络的特征,在不对网络进行尺度约束的条件下,利用卷积神经网络自身携带但未充分使用的尺度特征进行“自我学习”,增强网络模型性能并提高鲁棒性。所以本文提出的方法符合人体姿态估计研究的大趋势和实际应用的需求,有着较为重要的意义,同时也充满着挑战性。
其他文献
电磁波电场强度矢量的取向随着时间发生改变的现象称为电磁波的极化,光学领域这一现象通常被称为电磁偏振。在不同的仪器设备中,通过极化状态的转换来得到所需形式的极化波是非常有必要的。早期的极化控制主要通过液晶和结晶体的相位延迟和双折射效应,或采用多层光栅和铁氧体来实现,但基于这些方法设计的结构较为复杂、样品的加工难度较大,而且难以实现微型化和集成化,同时在性能方面也存在频带较窄、模式单一、极化选择性较差
图像分类作为计算机视觉领域的基石,在图像、视频数据爆炸式发展的今天显得尤为重要,并具有巨大的现实意义。深度学习在图像分类领域不断发展,做出了许多巨大突破,与此同时如何再次提升模型准确率、开发模型潜能以适应有限的硬件资源成为了热点问题之一。知识蒸馏作为知识迁移的具体实现手段,在模型压缩领域发挥了巨大作用。本文运用知识蒸馏的自蒸馏思想,优化了网络模型的训练策略,提出了基于训练过程的并联知识迁移训练架构
CT技术作为患者身体检查,诊断疾病的有效手段,已经在临床广泛使用。但CT检查过程中产生的射线对人体带来的伤害却也不能忽视。采用有效的手段可以减少CT检查过程中产生的射线量,比如降低管电压,降低管电流,降低曝光时间,减少采样角度等。但是降低辐射剂量,在CT成像过程中会产生CT图像上不属于组织结构影像的伪影,使图像细节模糊,图像清晰度下降,甚至会影响医生的诊断结果,给患者带来更为严重的危害。近年来,深
多智能体系统是由一群具备感知、通信、计算和执行能力的智能体经过互相关联而形成的一个网络系统。在多智能体系统中,包围控制是指智能体依据所获得的传感器数据,对目标或者目标区域进行环绕运动的一种控制方式,可应用于对目标的搜索、救援、探测、监测等场景下。本文研究了基于方向信息的多智能体包围控制问题。其中,基于方向信息是指智能体所搭载的传感器仅能测得自身和目标之间的相对方向,无法测得自身与目标之间的距离。基
近年来,随着计算机软件及硬件的飞速发展,深度学习得以在计算机视觉、自然语言处理、无人驾驶等领域崭露头角。卷积神经网络作为深度学习中最重要的模型之一,在图像分类、目标检测等方向上取得了优异的成绩,但也伴随着诸如过拟合、时间内存开销较大等需要解决的问题。作为最具代表性的正则化方法之一,Dropout方法通过屏蔽部分神经元参与训练的方式有效地抑制了过拟合现象的发生。但在卷积神经网络上,普通的Dropou
随着科技的发展,碳化硅高温压力传感器被广泛应用在石油钻井、化工冶金和航空航天等领域。目前国内外主要致力于传感器结构设计优化及失效分析和欧姆接触结构设计及失效分析等方面进行研究,对碳化硅高温压力传感器的应力模型研究报道较少。在广泛使用高温压力传感器的航空航天领域,传感器发生故障可能导致巨大的财产损失甚至危及人的生命安全。因此,研究碳化硅高温压力传感器结构在不同应力,尤其是综合应力下的应力模型,定量描
合成孔径雷达干涉测量技术(Synthetic Aperture Radar Interferometry,简称InSAR)是一门融合了 SAR成像和干涉测量的新技术,并且在三维重建和形变监测方面取得了重大成就。由于InSAR系统无法直接通过干涉相位获取准确的地球物理量,相位解缠作为InSAR技术流程中的一个重要环节,能够通过缠绕相位还原真实相位,从而使整幅图像能够提供有意义的信息。一方面,深度学习
由于单架四旋翼存在飞行距离短,载重有限等问题,因此在一定程度上限制了某些场景下的应用。多四旋翼协同控制能够很好的解决单架四旋翼存在的不足,如何协调多架四旋翼的协同控制成为研究的热点。首先,介绍了四旋翼飞行器的建模过程。第一步对四旋翼飞行器的组成和结构进行简介,然后再建立相关坐标系和四旋翼飞行器的数学模型,简要介绍模型预测控制,通过对模型进行分析,将模型解耦并线性化成平移和转动动力学的线性时变状态空
近些年来,随着机器学习和深度神经网络两个领域的迅速发展以及智能设备的普及,人脸表情识别技术正在经历前所未有的发展,基于深度卷积神经网络的人脸表情识别算法取得了长足的进步,并且已经超越了传统的人脸表情识别算法。同时,5G时代的到来以及大规模普及的软硬件基础条件也已具备,基于这种方法的市场与应用前景十分广阔。然而深度卷积神经网络存在着自身的局限,随着网络结构变得愈加复杂,训练参数量也与之增加,使用网络
在过去的几十年中,科技的进步推动着全球经济快速发展,也使得人民生活质量稳步提高,但是伴随而来的是越来越高的疾病入院率。呼吸系统疾病具有易感染、易复发、治疗周期长等特点,已经严重地威胁到了人们的身体健康,给全世界造成了沉重的负担。随着计算机科学技术的发展与大数据和人工智能的广泛应用,通过数据挖掘的方法对呼吸系统疾病的风险进行分析,既有助于对该疾病更为全面地认识和了解,也能够提高医疗服务体系的质量。本