论文部分内容阅读
2507双相不锈钢是一种含碳量低,含高铬、镍、钼、氮等元素的双相不锈钢。由于奥氏体和铁素体相晶体结构和性能方面的不同,双相不锈钢具有比单相组成的不锈钢更复杂的塑性变形行为。随着双相不锈钢应用的普及,对其成形性能的研究极为迫切,而对双相不锈钢成形机理及其变形行为研究的不足局限了双相不锈钢板材的二次加工。因此,本文以2507双相不锈钢板材为研究对象,基于双相不锈钢板材的力学性能,成形性能指标,采用OM、EBSD、TEM等分析方法,通过平面各向异性,宏观织构,微观组织以及微观晶粒取向等方面,对2507双相不锈钢板材的成形性能及两相变形行为进行了深入探讨;并通过冷轧过程中冷轧方向的改变,弱化了不利织构对板材成形性能的影响,提高了板材的r值,为改善板材的成形性能提供了新的可能性。通过对2507双相不锈钢实验板材各项成形试验研究以及不同方向的拉伸试验,研究了实验板材的基本成形性能。研究结果表明,不同方向力学性能差异明显,与轧制方向呈90°方向上的抗拉强度最大,比45°方向上的抗拉强度高出约6.3%。不同方向的Lankford系数(r值)呈倒“V”型分布,RD方向r值最小,只有0.45,45°方向的r值达到峰值,为1.05,约为RD方向r值的2.3倍,TD方向r值在两者之间,为0.88。福井锥杯试验表明实验板材锥杯值较大,为47.4 mm。凸耳试验表明实验板材冲压制品易产生45°型凸耳。不同试验条件下的埃里克森杯突试验表明实验板材的杯突值受变形速度,润滑条件的影响。通过对2507双相不锈钢实验板材Swift拉深试验及微观织构研究,揭示了双相不锈钢两相中不同的织构特点。研究发现,实验板材铁素体相中以轧制织构α纤维织构(<110>//RD)为主,集中在{001}<110>到{112}<110>取向之间,奥氏体相中晶粒取向主要集中在β取向线附近,以及一定的再结晶R织构。不同方向的冲压筒形件壁厚分布不均匀,底部圆角处是易破裂区域,发现筒口处的折叠裂纹是由于压边力的不足以及两相变形不均匀性共同导致的。通过对实验板材不同厚度层的织构分析发现,板材厚度方向存在明显的织构梯度。2507双相不锈钢实验板材在拉伸变形过程中,45°的方向上的{001}<110>取向晶粒发生偏转,成为{115}<110>取向晶粒,从而导致45°的方向较RD和TD方向有着最大的{111}/{001}体积比,使45°的方向上的r值最大。通过对实验板材不同应变速率的拉伸试验研究发现,实验板材对拉伸速率不敏感,并揭示了不同变形量下两相的塑性变形机制。通过不同应变下的两相微观硬度值的变化发现铁素体相的显微硬度小于奥氏体相的显微硬度。较软的铁素体在变形的初始阶段承载了更大的变形,随着变形量的增加,变形开始传递到较硬的奥氏体相,两相协调变形。同时,通过对两相微观变形形貌的观察,研究发现应变在铁素体和奥氏体相中分布不均匀,位错在相界处塞积,位错的运动受到相界面的阻碍,降低了奥氏体和铁素体相之间的协调变形能力。通过对比不同冷轧轧制方向对实验板材成形性能影响的研究,揭示了不同轧制工艺对实验板材成形性能的影响规律。在控制总压下率相同的情况下,改变冷轧轧制方向对实验板材的强度影响不大,但是对板材的r值有明显的影响,横向轧制后板材r值提高到0.98,比常规轧制后的r值提高了 8.9%。同时发现横向轧制下,可以有效弱化板材铁素体相中的轧制织构,尤其是冲压不利织构{001}<110>的织构强度。横向轧制退火后,实验板材中{001}<110>织构的强度下降了约41.7%,大大降低不利织构对板材成形性能的影响,从而提高了板材的r值,改善了成形性能。