论文部分内容阅读
特征提取是人脸识别的核心问题,通过对人脸图像数据进行特征降维是提高人脸识别效果的有效途径。目前,特征降维主要有主成分分析、线性判别分析、局部保持投影、基于稀疏表示等方法。本文主要对线性判别分析和基于稀疏表示的子空间特征提取方法进行了研究,从样本的局部结构出发,研究新的子空间特征提取方法,并将其应用到人脸识别中。主要工作内容如下:(1)提出了局部非负稀疏保持投影子空间特征提取算法LNSPP(Local NonnegativeSparse Preserving Projection)。研究发现,对给定样本进行稀疏表示时,大部分非零系数来自目标样本的近邻样本。为了使稀疏保持投影算法能获得更加稀疏的稀疏表示系数,更好地表达数据之间的关系,该算法采用径向基核函数测度公式来计算目标样本的近邻样本,然后利用样本的近邻来进行非负稀疏表示,并寻求一个投影空间来保持所有训练样本的局部非负稀疏重构关系。实验结果表明该算法比稀疏保持投影能获得更好的识别率。(2)提出了局部协同保持投影算法LCPP(Local Collaborative Preserving Projection)。该算法将协同表示引入稀疏保持投影算法中,利用目标样本的近邻样本来协同表示该样本,大大降低了算法的运行时间,同时在一定程度上提高了算法的识别率。(3)提出了基于模糊隶属度的局部线性判别方法FLLDA(Fuzzy Local LinearDiscriminant Analysis)。通过研究局部线性判别方法LLDA(Local Linear DiscriminantAnalysis),针对LLDA利用欧式距离来寻求近邻样本,而且没有考虑近邻样本的分布信息这一问题,FLLDA利用核函数测度公式来求解测试样本的近邻样本,并利用近邻样本的模糊隶属度重新定义了类内离散矩阵和类间离散矩阵,充分利用了近邻样本的分布信息。该算法在ORL、AR和FFRET上都能够提升识别效果。(4)提出了基于协同的局部线性判别分析算法CLLDA(Collaborative Local LinearDiscriminant Analysis)。利用协同表示来求解测试样本与训练样本之间的距离,求得最近邻样本,然后利用近邻样本来进行线性判别分析。该算法在ORL、AR和FERET上都能够提升识别率,尤其是AR、FERET数据库提升较明显,而且相对LLDA算法来说比较稳定。