【摘 要】
:
精密加工平台是精密制造领域之中至关重要的设备,其运动控制的精度和噪声直接影响了所加工工件的精度参数,是影响高端制造业的瓶颈因素。因此,对精密加工平台的精度有着严格的要求,而直线电机作为精密加工平台的核心部分,需要其平滑的输出来实现气浮轴的精准位移,由此对直线电机驱动器的输出性能具有更高要求。本课题针对精密加工平台对于直线电机驱动器的技术要求,对现有的直线电机驱动器进行对比研究,并对全球该领域的研究
论文部分内容阅读
精密加工平台是精密制造领域之中至关重要的设备,其运动控制的精度和噪声直接影响了所加工工件的精度参数,是影响高端制造业的瓶颈因素。因此,对精密加工平台的精度有着严格的要求,而直线电机作为精密加工平台的核心部分,需要其平滑的输出来实现气浮轴的精准位移,由此对直线电机驱动器的输出性能具有更高要求。本课题针对精密加工平台对于直线电机驱动器的技术要求,对现有的直线电机驱动器进行对比研究,并对全球该领域的研究现状进行分析,提出一种线性驱动器的结构,经过理论与实验验证线性驱动器的性能。主要研究内容如下:首先对直线电机的工作原理以及驱动系统中电流环的控制原理进行分析,提出线性驱动器的设计目标以及参数要求,通过理论分析,提出一种三相电机线性驱动器的结构。在此基础上,设计一种线性驱动器的硬件电路,该结构包括驱动、电源以及控制三个部分,其中驱动部分提出一种三级功率放大器结构,采用差分电路作为输入级,晶体管作为中间电压放大级,单位增益的推挽结构作为输出级,并引入各级负反馈以及整体的负反馈改善驱动的非线性。电源部分采用DC/DC转换器与线性稳压器配合供电,在达到提升电源转换效率的同时,起到抑制系统噪声的目的。为满足驱动器对控制能力以及系统对于实时性的要求,采用FPGA与ARM相结合的框架设计线性驱动器系统软件。软件主要包括正弦波信号的产生、Clark变换、电流环控制、Modbus通信程序等功能。最后,针对PWM驱动器与线性驱动器进行对比研究,从波形失真、效率等几个方面分析两种驱动器之间的优劣区别,并具体分析造成线性驱动器与PWM驱动器之间性能差距的原因。采用仿真软件对PWM驱动器以及线性驱动器进行仿真分析,验证上述理论分析的合理性。将本文所设计的线性驱动器与PWM驱动器进行实验验证,从输出波形的稳定性等方面对二者的性能进行对比。将所设计的驱动器驱动精密加工机床的气浮轴,进行位置环的实验,以验证满足控制精度与分辨率的性能指标。
其他文献
随着世界各国双碳目标的提出,作为减少碳排放的重要举措之一,新能源汽车的发展越来越受到重视,其中纯电动汽车更是主要的研究与应用方向。为了缓解大量电动汽车涌入对现有电网的冲击,构建灵活的V2G系统成为未来发展趋势,而双向车载充电机则是其中必不可少的装置,结合此应用场景,本文研究并设计了一种对称型CLLC高阶谐振式双向变换器。对称型CLLC变换器具有完全对称的电路结构,不存在传统LLC反向运行无法升压的
课题针对某风电场由于线路串补系统导致的次同步谐振(Sub Synchrous Resonance,SSR)抑制问题。针对风电场内部运行参数对风电场稳定运行的影响,本课题将基于数字孪生思想,从机理分析、谐振检测、功率预测及参数回归等方面为次同步谐振问题提供求解分析思路,进而提升风电消纳能力,本文主要研究内容如下:基于双馈式风力发电机的工作原理进行建模,分析其拓扑结构和工作原理,同时给出风力机、网侧变
随着能源危机与环境问题的日益加剧,风电和光伏等新能源受到人们的青睐,在配电网中的渗透率逐步提升。但风电和光伏由于其随机性和间歇性,给配电网的优化调度带来了新的问题。微电网作为新能源接入配电网的有效形式得到了充分发展,数目随之增加,逐渐呈现出多微网联合调度的新发展格局。同时对于需求侧管理的研究也不断深入,在用户侧进行需求响应能够平抑负荷功率波动,缓解配电压力,提升新能源的消纳水平。因此,研究考虑需求
太阳能无人机因具有滞空时间长、综合费效比高及部署维护简便等优势,成为各国争相布局的科技产业新高地。能源系统作为太阳能无人机供能的“心脏”部分,其管理策略优化、电能质量提升、储能寿命延长等方面均面临巨大挑战,成为本领域研究热点之一。因此本文将对能源管理系统的功率分配策略及系统级稳定性分析进行深入研究。在对能源系统中光伏阵列、储能电池、航电设备、动力电机及相应接口变换器等组成单元建立数学模型的基础上,
随着风能大规模的应用,目前采用的双馈风电系统大多为电流源型控制,缺少为系统提供惯量的能力,为此,电压源型控制应运而生,虚拟同步控制是其主要的实现方式,因此本文将对电压源型虚拟同步控制的双馈风电机组并网稳定控制方法以及惯量响应与一次调频进行研究。本文首先在两相同步旋转坐标系中建立了电压源型双馈风电机组状态空间模型,模型包括双馈风机本体、风力机轴系、转子侧变换器及其控制器、网侧变换器及其控制器和线路模
<正>推动国有企业党建工作与生产经营深度融合,是国有企业保持正确发展方向的关键,是国有企业党建工作的生命力之所在。江苏华美热电有限公司坚持问题导向,聚力高质量党建和高水平绿色转型,结合电力产业工作实际,创建“1+2+6+N”立体党建工作法,为党建工作和生产经营深度融合提供了路径和载体,全面增强了企业的引领力、创新力和影响力。
电力能源是全球能源互联网的重要组成部分,随着双碳目标的推进以及分布式发电和可再生能源技术的高速发展,电力系统中交直流混合微电网的规模将逐步扩大。本课题以包含多种用电类型的混合微电网为研究背景,设计了适用于交直流微电网柔性互联的双向变换器,同时为其扩展了一个无感电力弹簧接口,既满足不同形式微电网间功率双向传输的需求,又解决交流配电网负荷侧电压波动的问题,以更好地服务于未来智能配用电系统。本课题首先提
交直流电压标准源是一种高精度、高稳定性的电压校准设备,在科学研究以及工业领域中有着广泛的应用。国内的交直流电压标准源的相关技术指标如分辨率和稳定性与发达国家存在差距,且标准源通常集成了多种功能,体积较大,使用不够灵活。在此基础上,本文提出一种基于PCIe总线的交直流电压标准源,PCIe总线相较于传统的总线,其传输速度更快,扩展性也更强,因此设计基于PCIe总线的标准源设备具有重要意义。本文针对基于
永磁同步电机具有结构紧凑、功率密度高等优有点,符合当前碳达标、碳中和的发展理念。无位置传感器永磁同步电机驱动技术能够提高系统的空间利用率、可靠性和冗余度,因此广泛应用于航空航天、电动汽车、高档数控机床等领域中。作为典型无位置传感器控制方法,基于模型法的转子位置估计策略具有通用性强、无需额外注入信号等优点。然而传统模型法存在无法实现有限时间收敛以及估计转子位置包含谐波等问题,无法满足工业界对永磁同步
旋转矢量(Rotate vector,RV)减速器是工业机器人的核心部件之一,在工业自动化领域有着广泛的应用。在减速器常见的故障类型中,齿轮故障会对传动系统的稳定性和安全性产生较大的影响,对其进行及时诊断能够有效降低系统的维护成本。然而,传统的基于振动信号的齿轮故障诊断方案,存在设备成本较高、使用难度较大等问题。因此本文使用采集成本较低的电气信号结合解卷积方法,对RV减速器齿轮故障诊断方案进行研究