论文部分内容阅读
金属材料是人类生产生活过程中最重要的材料之一,其通常作为结构材料应用。结构材料中力学性质是其首要考量,而在力学性质中,弹性性质是最基本但又最为基础的性能之一。根据弹性性质能进行多种优异性能的预测,如难熔合金中表现出的橡胶金属、生物医用特性等。目前0K下的二阶弹性常数可轻易的通过第一性原理计算获得,而目前对于外界条件(如高温、高压等)下的弹性常数获取困难。因此,如何快速评估材料在外界条件下的弹性性质对加速结构材料设计有着重要意义。在金属材料的设计上,过去主要是以一种元素作为基体,通过添加其他微量元素来进行性能的调控。而这种设计经验大大的限制了合金设计的可选成分范围。而近年来发展出来的高熵合金,突破了传统合金设计中基体的概念,从而大大的拓展了合金成分设计的范围,为设计具有优异性能的材料提供了更多可能。然而,多元合金在给合金的设计带来机遇的同时也带来了挑战,由于成分空间的大大增加,如何高通量的设计合金成分成了多元合金设计的一大难点。因此,本文以难熔合金为研究对象,从其相组成入手,研究了难熔合金中成分对相组成的影响,预测了不同成分下的难熔多元合金的相组成,在此基础上,综合考虑密度与BCC相的范围,选定了后续的研究体系,然后对该体系下全成分空间的BCC相进行了晶格常数、二阶与三阶弹性常数的研究,构建其BCC相在全成分空间的成分-性能关系数据库,根据构建的数据库,对该体系进行了高通量设计,并以三阶弹性常数为依据,引入其非线性效应,进而评估了在高温高压条件下该体系BCC结构的弹性常数。本文展示了一套从相组成到力学性能的多元合金的高通量设计范式,为多元合金的设计提供了新思路。对于难熔合金(包含Cr、Hf、Mo、Nb、Ta、Ti、V、W、Zr等元素)相组成的研究上,本文从文献数据以及相图上提取了大量成分-相组成数据,并采用机器学习的方法对其进行数据挖掘,构建了难熔合金成分-相组成的关系模型,进而对其相组成进行了预测。研究表明,以合金元素为描述符的支持向量机(SVM)模型最能反映难熔合金中的成分-相组成关系,其相应的训练与测试精度分别达到92%和88%,并进一步通过与实验上的三元相图和多元合金的结果进行对比,充分说明了本文构建的成分-相组成模型的可靠性。根据该模型,本文预测了低密度的Ti-V-Zr-X(X为其他难熔元素)四元体系的相组成,结果表明Nb-Ti-V-Zr中BCC相的区域最大,从而选定Nb-Ti-V-Zr作为后续研究的对象。在选定研究体系后,本文着重于对该体系的力学性能进行从头预测。利用高阶弹性常数可引入非线性项,从而有助于研究研究极端条件下材料的力学响应。而传统的计算高阶弹性常数的方法,如应变-能量法,计算量大,计算流程繁琐,因此本文首先对高阶弹性常数的计算方法进行了研究,提出了一种计算高阶弹性常数的新方法,即应变模式降维算法。该方法通过对应变模式合理的选择,从而实现所需应变模式数目的降维,进而提高计算高阶弹性常数的效率,并开发了相应的软件(Elastic3rd)将计算流程自动化,同时提出计算弹性常数时应变模式好坏的评价指标。以计算金刚石的三阶弹性常数(TOECs)为例,比较了传统方法与该方法,结果表明,应变模式降维算法在计算立方体系的TOECs上计算效率为传统方法的3-5倍,且具有较好的准确性、稳健性以及可扩展性。此外,本文还修正了冲击波实验测量的金刚石TOECs的误差。采用本文提出的应变模式降维算法与开发的Elastic3rd软件,进而对Nb-Ti-V-Zr四元体系整个成分空间的BCC结构的二阶和三阶弹性常数进行了计算。通过与文献中的实验与计算结果的对比,验证了本文计算方法与计算结果的可靠性。进一步的采用CALPHAD方法中描述性能与成分的关系,构建了整个成分空间的成分-弹性常数的数据库模型,并研究了多元相互作用对弹性常数的影响,结果表明多元相互作用对弹性常数的贡献随元数的增加而减小,当考虑到三元相互作用时已经能很好的描述多元体系的弹性常数与成分的关系,为构建多元体系成分-性能关系提供了指导。利用上述构建的晶格常数以及弹性常数的成分-性能数据库以及难熔合金相组成的机器学习模型,本文进一步的对Nb-Ti-V-Zr体系进行了高通量设计。在Nb-Ti-V-Zr体系中设计了一系列的单相BCC且具有特异弹性性质的合金成分,包括橡胶金属、部分拉胀材料、单晶各向同性材料以及生物医用材料等,并对比了部分文献结果说明预测的可靠性。此外,利用三阶弹性常数研究了全成分空间BCC结构材料的二阶弹性常数随压强和温度的变化,并对比了部分实验结果说明方法的可行性。以此研究了该体系在外界条件下的稳定性,结果表明,随着压强的增大,Nb-Ti-V-Zr体系的Born失稳成分区间减少,而剪切失稳的成分区间增大;而随温度的增加,稳定性略有降低,且单晶弹性常数对温度的导数在X0.3Y0.6Zr0.1和X0.2Y0.7Zr0.1(X、Y为Nb、Ti、V)成分附近存在极小值,因此在该成份附近具有较高的热稳定性。并设计了几种具有多种功能的合金,包括同时具有部分拉胀、橡胶金属以及生物医用的Nb0.2Ti0.7Zr0.1和Nb0.16Ti0.62V0.08Zr0.14;具有单晶各向同性和生物医用的Nb0.35Ti0.63V0.02。