论文部分内容阅读
短波语音通信环境下飞机类型识别是非合作通信相关方向一个新课题,无论是在民用领域还是在军用领域都有着广阔的应用前景,对国家安全非常有意义。利用短波语音通信环境下飞机驾驶舱内声信号进行飞机类型识别与利用其他方式进行飞机类型识别相比,有着很多优势。首先,其属于被动监听,不易被发现,隐蔽性好;其次,短波通信传播距离远,传播距离可以以千公里计量;最后,短波监听设备成本低,易于搭建,利于推广。本文首先对飞机驾驶舱内非语音段声信号进行研究分析,提出了f0Hz小波包能量熵偏度峰度的特征提取方法。与现有的背景噪声特征提取方法相比,本文所提出的方法优势在于:飞机驾驶舱内,在某段范围内平均频率为f0Hz的声信号特征明显,具有高健壮性、高鲁棒性;小波包能量熵既能反应驾驶舱内声信号的信息量多少,又能反应系统状态不确定性程度;偏度峰度可以很好的反应驾驶舱内声信号的高斯特性。其次,对飞机驾驶舱内语音段声信号进行分析研究。因为飞机驾驶舱内声信号有些不存在非语音段,只存在语音段,而本文是根据非语音段声信号对飞机类型进行识别,故对语音段声信号进行去除语音处理就显得尤为重要。所以,对飞机驾驶舱内语音段声信号先要进行去除语音的处理,故提出了基于经验模态分解的小波阈值去除语音的方法。该方法可以很好的去除语音段中的语音信号,得到去除语音后的非语音段声信号。随后,再对去除语音后得到的非语音段声信号进行f0Hz小波包能量熵偏度峰度特征提取。最后,搭建实验平台,对非语音段提取到的特征和语音段去除语音后得到的非语音段所提取的特征分别使用支持向量机分类器和朴素贝叶斯分类器进行飞机类型的分类识别。对比实验结果显示,朴素贝叶斯分类器的分类识别效果好于支持向量机分类器,并且朴素贝叶斯分类器学习和预测所用时间也较支持向量机分类器少。同时,利用直接截取到的非语音段声信号提取的特征进行飞机类型识别的识别率大大高于对语音段去除语音后所得到的非语音段声信号所提取的特征进行飞机类型识别的识别率。