论文部分内容阅读
有机太阳能电池以其材料和可卷对卷工业制造的双重优势逐渐成为了光伏技术领域的新生力量。最新研究进展表明,有机太阳能电池的能量转换效率已经被提升至12%左右,同时低成本投入的有机太阳能电池产业化制造已经开始出现。有机太阳能电池的潜在应用包括太阳能发电厂,便携式电子设备,半透明太阳能电池窗户,建筑物或者公共设施等领域。由于有机半导体相对较短的激子扩散长度以及较低的载流子迁移率,有机太阳能电池中的活性层厚度被限制在100nm左右。这大大降低了光吸收的效率,由此导致的光生激子损耗使得薄膜有机太阳能电池的应用受到限制。在有机太阳能电池中,一种可行的方案是尽可能的提高活性层的光吸收,迄今为止,利用不同光捕获方法提高有机太阳能电池的光吸收已被广泛报道,其中包括抗反射涂层、光子晶体及表面等离子体纳米结构的使用。表面等离子体纳米结构通过局域表面等离子体共振效应引起近场增强成为了提高太阳能电池光吸收的有效途径。可应用于光捕获的表面等离子体结构分为两类:纳米光栅和纳米颗粒。表面等离子体光栅需要复杂的纳米制造技术来生成周期性的结构,对于投入成本而言是个很大的挑战,而表面等离子体纳米颗粒可以通过低成本的方法进行合成,使其成为有机太阳能电池中光捕获结构的较佳选择。在本工作中,我们通过在有机太阳能电池的空穴传输层和活性层界面引入二氧化硅包覆的金纳米棒颗粒,利用表面等离子体共振效应使电池性能得到了显著提高。二氧化硅外壳防止了金纳米棒在乙醇溶液中的团聚以及金纳米棒表面严重电荷复合的发生,否则金纳米棒在界面位置的直接引入将会导致开路电压的大幅度降低。研究表明,二氧化硅包覆金纳米棒的引入保证了开路电压的稳定,同时增大了有机太阳能电池的短路电流,能量转换效率较标准器件提高了11%。针对二氧化硅包覆金纳米棒颗粒对有机太阳能电池性能提升的机制,本论文利用形貌、光学、电学以及理论模拟进行了系统的分析。研究发现,宽谱带的光吸收增强导致了活性层中激子产生的增多,这是导致短路电流密度提高的主要因素。模拟结果表明单个的金纳米棒颗粒所激发的横向及纵向表面等离子体共振效应以及金纳米棒颗粒之间的相互耦合效应可以在金纳米棒附近产生强电场,由此提高了活性层的激子产生率,同时二氧化硅包覆金纳米棒的引入也改善了有机太阳能电池中的空穴提取。