全无机非铅金属卤化物的制备及X射线成像应用

来源 :重庆大学 | 被引量 : 0次 | 上传用户:tingchao12
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
X射线成像技术在医学诊断、材料分析和无损检测中都有着广泛应用。其中闪烁体可以将高能X射线转化为低能可见光,其物理特性也直接影响着X射线成像的效果。金属卤化物由于其制备方法简单,具有较高的光致发光量子产率(PLQY),在近些年来引起了广泛的研究。其中Cs Pb X3(X=Cl,Br,I)材料由于其较短的衰减寿命、较大的射线衰减系数等特点而非常适合应用在X射线成像当中。然而,由于Pb元素含有毒性,不利于环境和人体健康;此外,Cs Pb X3材料及相关器件在无封装的情况下,稳定性较差,这些致使其实际应用受到了一定的限制。因此,制备出一种非铅无毒、稳定、快速射线响应的闪烁体材料具有重要的意义。本文的主要工作内容如下:(1)使用常温溶液法合成出全无机非铅的Cs3Cu2Br5微米晶,并对微米晶进行了一系列的材料表征,Cs3Cu2Br5微米晶的最佳激发光波长为293 nm,在深紫外激发下呈蓝色,PLQY为16.55%。除此之外,微米晶呈棒状均匀分布,统计其长度分布为2.32μm-8.84μm。紧接着,我们又对微米晶的稳定性进行研究,发现其空气、热、光稳定性都较好。将Cs3Cu2Br5微米晶均匀滴涂在光纤面板上制成闪烁屏,可以对物体进行一个清晰的成像。(2)研究合成出全无机非铅的Cs Cu2I3微米晶,并制成基于Cs Cu2I3的闪烁屏,通过该闪烁屏可以对放在胶囊中的弹簧进行清晰的成像显示。Cs Cu2I3光产额为19656 photons Me V-1,高于Cs3Cu2Br5的14700 photons Me V-1,除此之外,Cs Cu2I3的稳定性以及X射线衰减系数在Cs3Cu2Br5的基础上都有所提升。(3)研究合成了全无机非铅的Ag基金属卤化物Rb2Ag Cl3微米晶并探索Rb2Ag Cl3在X射线成像中的应用,制备出的Rb2Ag Cl3微米晶具有47.87%的高PLQY以及2个月以上的空气稳定性,该材料的热、光、PL稳定性也非常优异。Rb2Ag Cl3的光产额为21838 photons Me V-1,高于Cs Pb Br3(21000 photons Me V-1),同样高于Cs3Cu2Br5和Cs Cu2I3。随后制备了基于Rb2Ag Cl3的闪烁屏并应用于X射线成像中,为了提升闪烁屏的均匀度,我们进一步制备了Rb2Ag Cl3的柔性闪烁屏,极大程度上改善了闪烁屏的均匀度,并使用柔性闪烁屏对蓝牙耳机进行了高分辨的成像。
其他文献
由于光学材料的色散特性或者光传播过程中累积的相位色散,用于成像的光学系统存在严重的色差问题,这导致图像产生紫边现象,造成图像模糊。为解决这一问题,传统光学系统通常采用双透镜或多透镜级联方式来校正色差,这使得系统较为笨重和体积大,不利于透镜的平面化和集成化。且由于衍射效应,其光学分辨率被限制在阿贝衍射极限0.5λ/NA(其中λ和NA为透镜工作波长和数值孔径)以上。近年来,超构表面的发展为灵活操纵电磁
学位
随着无线传感技术的发展,传感节点供电需求与日俱增,传统的电池供电方式存在环境污染大及维护成本高等问题,因此利用能量采集技术实现传感节点的自供电已经成为业界的关注热点。振动能量因其在环境中的普遍性,已被广泛应用到无线传感节点自供电技术研究中。然而,传统的压电振动能量采集器由末端带有质量块的悬臂梁组成,其工作频带过窄,当工作环境频率在较大的范围内变化时,这种线性系统的回收功率会急剧下降。因此,具有宽频
学位
齿轮传动系统广泛存在于各领域的工程机械系统当中,例如齿轮减速器、涡轮机和发电机等。在有转动轴参与工作的齿轮传动系统中,过大的不正常振动会影响其传动效率,减少其使用寿命,或者更严重可能由于系统中的某个零件破坏或失效而导致系统故障,引发安全事故。轴承和齿轮作为定轴齿轮传动系统中的关键的支承部件及传动部件,其制造误差会显著影响转子系统的振动特性。由于齿轮传动系统中齿轮及轴承制造误差的影响,系统各部件振动
学位
2,4,6-三硝基甲苯(TNT)为恐怖分子进行恐袭的主要爆炸物,其对人民生命财产安全构成巨大威胁,因此对TNT检测具有重要意义。光纤荧光传感器由于具有结构简单、性能稳定且响应迅速等优势,在爆炸物检测中应用广泛。光纤锥探针结构进一步增强了传感器的可移动性,比传统光纤结构更加适合现场爆炸物快速检测。因此,本文提出一种光纤锥荧光探针痕量TNT检测方法,主要内容如下:(1)光纤锥荧光探针爆炸物检测方案及原
学位
人体内压力监测是人体健康监测领域的重要环节之一,是进行疾病诊断治疗的重要基础与前提。传统电学压力传感器有尺寸大、存在漏电风险等问题。光纤法珀压力传感器具有尺寸小、精度高、抗电磁干扰能力强、可靠性高等优点,在航空航天等领域得到广泛应用。但面向介入式医疗应用时,仍需解决传感器灵敏度低、可靠性差等问题。为此,本文采用生物相容性好的硅橡胶材料,设计光纤法珀压力传感器。从压力传感器结构设计、制作工艺、实验验
学位
表面增强拉曼散射(Surface-enhanced Raman scattering,SERS)是一种强大的技术,被广泛应用于生物、化学、食品安全等方面。传统的SERS基底大部分以贵金属纳米材料构成,该类基底具有较高的灵敏度,但不可以重复使用,限制了其实际应用。越来越多的科研工作者立志于设计一种将高灵敏度、可重复使用结合起来的SERS基底。该类基底在食品领域、免疫分析领域、水净化领域有着巨大的发展
学位
分布式光纤传感系统因光纤抗电磁干扰、体积小重量轻可进行长距离沿线的分布式测量。其中,基于相位敏感型光时域反射计(φ-OTDR)技术能够实现实时振动测量,在周界安防、管道监测等领域具有广阔的应用前景,但不能精准的侦断事件。视频监控技术虽可实现精准识别但不能长距离高重复性使用。为了解决长距离高精准的智能安防,提出基于分布式感知的视频联动传感技术,利用φ-OTDR技术和实时目标检测技术的优势,将它们融合
学位
经过十余年发展,有机-无机杂化钙钛矿太阳能电池的能量转换效率已经突破到了25.7%,但由于有机阳离子热稳定性较差而难以实现大规模商业化应用。用热稳定性高的无机阳离子(如Cs+)替代有机阳离子可以提升钙钛矿的热稳定性。其中,CsPbIBr2能够很好地协调热稳定性和光谱响应,受到了研究者们的广泛关注,但目前报道的CsPbIBr2无机钙钛矿太阳能电池最高效率仍与理论极限存在较大差距。为了提高太阳能电池的
学位
航空发动机轴向间隙是影响飞行器运行效率与安全的重要参数,其测量对发动机设计、制造起到积极反馈作用,是航空发动机进步迭代的关键,具有重大意义。由于轴向间隙测试位置特殊、测试环境恶劣且测试范围大,因此测量难度极高。当前条件下尚无满足测试需求的测试仪器,是亟待解决的重要技术难题。重庆大学光电工程学院针对航空发动机轴向间隙测量难点与需求,通过对扫频干涉测量技术研究,提出了基于扫频干涉与零差单频干涉测量方法
学位
显微CT(Micro Computed Tomography,MCT)是一种检测物体内部结构的微米级高分辨率无损检测技术,广泛应用于电子、材料等工业无损检测和生物医学成像等领域。常规显微CT系统受到其成像结构的限制,为获得更高分辨率的图像不得不牺牲视场尺寸。重庆大学ICT研究中心在承担的国家重大科学仪器设备开发专项(2013YQ030629)中开发了一种基于电子束偏转扫描的阵列微焦射线源,基于该阵
学位