Ti-26at.%Nb合金薄带的形变和再结晶织构研究

来源 :东北大学 | 被引量 : 0次 | 上传用户:flyskyxun
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
β型钛合金具有良好的力学性能、耐腐蚀性和生物相容性,而且其杨氏模量显著低于α和α+β型钛合金,可有效降低合金植入人体因杨氏模量偏高而引起的应力屏蔽效应,在生物医疗等领域应用前景广阔。本论文选取了 一种典型的无毒性的β钛合金Ti-26at.%Nb(下文简称Ti-26Nb)为研究对象,采用轧制法制备出厚度为0.55mm~0.06mm的合金薄带。利用金相显微镜、X射线衍射仪(XRD)和电子背散射衍射(EBSD)等技术研究合金轧制与退火过程中形变与再结晶织构的演变规律,得到以下主要结论:(1)冷轧压下率对Ti-26Nb合金形变与再结晶织构的影响与初始晶粒尺寸密切相关:当压下率小于55%时,大、小初始晶粒尺寸样品中的形变织构相似,当压下率增大到65%时,小晶粒尺寸样品中有利的{001}<110>织构显著增强,小的初始晶粒尺寸更有利于形变织构的优化;当压下率小于55%时,大、小初始晶粒尺寸样品中的再结晶织构相似,当压下率增大到65%时,大晶粒尺寸样品中不利的{111}<112>织构显著减弱,大的初始晶粒尺寸更有利于再结晶织构的优化。(2)Ti-26Nb合金的主要再结晶形核方式为晶界形核和晶粒内部形核,剪切带基本不形核。再结晶过程初期具有特定取向的晶粒并没有体积优势,且织构类型与完成再结晶以后的织构相似,因此表明该合金在再结晶过程遵循定向形核的机制。(3)确定了 Ti-26Nb合金临界变形量为8%~12%,且经临界轧制方法处理,有效降低了 {111}<112>再结晶织构并增强了 {001}<110>再结晶织构。织构优化的原因是临界轧制过程中,高泰勒因子{111}<112>晶粒获得了高应变储能,低泰勒因子{001}<110>晶粒获得了低应变储能,后续退火过程中晶界向高应变储能一侧移动。(4)交叉轧制显著影响Ti-26Nb合金的形变织构。在65%~88%的压下率范围内,常规轧制形成了以{112}<110>为峰值的强α织构,交叉轧制下则形成了更为有利的以{001}<110>为峰值的强α织构。
其他文献
随着工业化和城市化的发展,水污染问题愈发突出,其中重金属污染十分严重。氢氧化镁作为无机弱碱性化合物,被誉为绿色安全水处理剂,其具有较强的吸附能力和较好的缓冲性,可以很好地去除水体中的重金属离子。轻烧氧化镁直接水化所得的氢氧化镁,在反应过程中发生团聚,导致其粒径变大,比表面积减小,弱化了其吸附性能。因此需要通过表面改性,如使用分散剂、超声波分散、机械球磨等方法,减小水化过程中的团聚,细化晶粒,增大其
轴承等运动部件在运动过程中,部件之间不可避免地将会产生摩擦,金属与金属间的摩擦均会使运动部件产生严重磨损,大大减小部件及其配合零部件寿命;此外,在湿热的海洋环境下,Cl-、H2O等腐蚀性介质会使金属部件产生腐蚀,将会加剧机械零件的失效。有机无机复合防腐耐磨自润滑涂层的应用,可以在部件的表面形成滑动润滑膜减小摩擦功,疏水的有机粘结剂协同无机填料形成致密的网状涂层阻挡腐蚀介质对基体的侵蚀,延长部件的使
高铝铁矿石的使用引起高炉炉渣中w(Al2O3)质量分数偏高,导致炉渣的黏度升高,流动性变差,脱硫能力降低。改变炉渣中w(MgO)质量分数和二元碱度(R2)是调节炉渣冶金性能的重要措施,国内外学者对于高炉渣的冶金性能做了大量研究,但目前关于高Al2O3高炉渣冶金性能的定量研究相对较少,因此针对高Al2O3高炉渣,探究R2、w(MgO)/w(Al2O3)和w(Al2O3)质量分数变化对炉渣冶金性能的影
铝电解质是电解铝过程中不可或缺的一部分,从氧化铝的溶解到铝液在阴极的析出,整个电解的过程都是以铝电解质为介质进行的,铝电解质的变化直接影响着整个电解过程。因此,为了电解的顺利进行,保证铝电解质的相关参数在合适的范围之内是很重要的,分子比是铝电解质的重要参数之一。另外,我国的部分铝土矿中存在锂、钾等杂质,使用其作为原料制备的氧化铝进行铝电解生产会在电解质中出现锂、钾富集的情况,这给铝电解质分子比的测
目前我国钒铁的冶炼手段主要是通过对钒渣的氧化焙烧,使渣中V3+转变为V5+,再通过湿法浸出及二次焙烧工艺,制取五氧化二钒产品,最后将其与铁屑、还原剂混合,经加热精炼后得到钒铁合金。但钒铁冶炼的传统工艺能耗较高且对环境污染较为严重,与绿色冶金发展理念不符,因此开发一种流程短,绿色高效的钒铁合金冶炼新工艺具有重要意义。同时我国作为光伏材料和电解铝生产大国,大量的光伏切削废料和铝灰无法得到有效利用,本文
钢渣是炼钢过程中产生的固体废弃物,是钢铁企业排放量最大的冶金渣之一,但其资源化利用率低,不妥善处理不仅占用土地、污染环境,而且还会造成严重的资源浪费。关于钢渣还原提取铁资源的研究,目前主要采用碳热法,与此工艺相比,本研究采用铝灰还原熔融钢渣新工艺,在充分利用钢渣余热的同时完成钢渣中有价组元的提取回收和尾渣安定化处理,具有金属收得率高和冶炼成本低等诸多优点。然而,在冶炼条件下铝灰中主要组元的溶解动力
近年来,一种以含锂氧化物为对称电极,以传统SOFC电池材料为电解质,采用共压法制备的新型固体氧化物燃料电池(SOFC)在低温下(400~600℃)就取得了非常高的最大输出功率密度,这种新型结构电池为降低SOFC运行温度提供了一种潜在的解决方案。目前对于这种新型SOFC取得的非常高的低温电化学性能报导的较多,但其取得较高性能的原因和其电解质离子传导机理尚不清楚。我们近期的一系列研究发现含锂氧化物作为
硅铁铝合金具有密度大(4.2~4.6g/cm3,是Al密度的1.6倍左右)、熔点低(1060℃)、脱氧效果好的显著优势,因此主要用作炼钢用脱氧剂和热还原法炼镁用还原剂。随着钢铁产业的快速发展,对硅铁铝合金的需求逐渐增加。目前工业制备硅铁铝合金的方法主要有熔融金属兑掺法、熔盐电解法和电热法等,其中熔融金属兑掺法和熔盐电解法制备所得产品纯度高,但工艺流程长、能耗大、成本高。电热法具有工艺流程短、能耗低
为了研究气幕挡墙中间包技术运用于洁净钢生产的优势和特点,综合分析了气幕挡墙中间包内钢水的流动特性和夹杂物颗粒在中间包钢水中的运动和去除行为。首先建立了合理的数学模型,基于Euler-Euler方法的k-ε双方程模型对气幕挡墙气中间包内的流场进行数学模拟,主要控制变量有吹气位置、吹气流量、气泡直径和拉坯速度。根据模拟得出了中间包内的速度场、钢水流动轨迹、湍动能和湍动能耗散率的分布状态,以及中间包RT
由于介孔二氧化硅微球具有高的比表面积、可调的孔径和形貌,已经被广泛应用在催化、吸附、分离、能源转化和环境净化等热门领域。目前,二氧化硅微球的制备仍存在许多问题,例如:制备工艺复杂、微球之间严重粘连、球形度差和重复率低等。针对以上问题,本论文采用一锅法,在简单的硅前驱体/表面活性剂/酸(aq.)合成体系中,加入聚乙烯醇(PVA)作为单一添加剂,成功制备出了 SBA-15型介孔二氧化硅微球和“球上球”