论文部分内容阅读
本论文以研究基于激光测试技术的数控机床误差识别与补偿研究为主要内容,首先分析了国内外数控机床几何误差和热误差的检测技术与补偿技术的发展现状,对数控机床的误差进行了详细的分析和辨识。在比较了4种常用的几何误差检测方法后,使用Renishaw激光干涉仪对数控机床的线性定位误差进行了测量。然后,使用高精度的CCD激光位移传感器和涡电流位移传感器对机床主轴热变形进行了实时测量,同时,使用以ARM控制板为核心的测温系统对机床的关键部位进行了温度测量,并对机床的测温点进行了优化布点。在介绍了基于最小二乘法的多元线性回归建模方法后,建模了机床的热变形实时预测模型。最后,对机床的线性定位误差进行了丝杠螺距补偿和丝杠间隙补偿,基于开放式数控系统,使用PMAC控制卡对数控系统的G代码指令进行了实时修改,实现了机床热误差的实时补偿。该补偿方法在实际加工中被证实具有良好的补偿效果。全文共分七章: 第一章,提出了本课的题研究背景和意义,详细介绍了国内数控机床误差检测与补偿技术的发展现状,概括了本论文的主要工作。 第二章,介绍了数控机床的误差来源、误差的分类,对一台三轴立式铣床进行了详细的误差分析,提出了数控机床的几何误差和主轴热误差的辨识方法。这些工作为数控机床的误差检测提供了理论基础。 第三章,介绍了4种典型的几何误差检测方法:一维球列测量法、球柄仪测量法、平面正交光栅测量法和激光干涉仪测量法,在对这4种检测方法进行比较后,选用Renishaw激光干涉仪对一台三轴立式铣床的线性定位误差进行了测量。这些工作内容为数控机床几何误差补偿提供了可靠的实验数据。 第四章,介绍了数控机床热误差检测系统的特点,详细分析了机床测温系统和热变形测量系统的软硬件结构。本文突破性的把高精度CCD激光位移传感器应用到数控机床误差检测中,为数控机床热误差补偿提供了可靠的实验数据。 第五章,介绍了曲线拟合的最小二乘法,多输入单输出的多元线性回归法,为数控机床的误差补偿提供了良好的数学模型。利用基于最小二乘法的多元线性回归建模方法为数控机床的热误差建立了数学建模,通过对真实数据和估计数据的残差进行分析后,发现该模型具有良好的预测精度。 第六章,介绍了数控机床误差补偿的基本概念和相关工作原理,对数控机床的几何误差和热误差分别进行了补偿。该补偿方法在实际加工中被证实具有良好的补偿效果。 第七章,对本论文的研究工作和研究成果进行了总结,展望了未来的研究工作。