论文部分内容阅读
随着现代社会的发展,人们对于能源的需求越来越大。相对于传统的石油和煤等不可再生能源,寻找和发展可持续清洁能源是目前的重中之重,太阳能是最为理想的目标之一。目前的光电转化器件存在原材料昂贵,制备工艺复杂等问题,所以人们迫切的想要寻找一种廉价可塑性强的光电材料来推进光电转换领域的发展。自从2012年有人用CsSnI3和CH3NH3PbI3制备了高效率的太阳能电池之后,钙钛矿这种经典材料再一次进入了人们的视野,受到了全世界科研工作者的大力研究。钙钛矿材料由于其晶体表面缺陷较少,载流子迁移速率快,寿命长,激子的结合能和可扩散距离大,荧光量子效率高,原料廉价易得等特点,使得人们将其广泛应用于太阳能电池、LED、激光等领域。纯无机钙钛矿纳米材料既有传统半导体量子点材料的性质,也有钙钛矿材料优异的光电性质,非常值得我们深入研究,为将来的实际应用打下基础。在本论文中,我们提出了一种非热注入可控合成无机卤化铅铯钙钛矿的方法,将不同的反应前体溶解后一起混合加入一个容器中,直接升温加热就可以得到无机钙钛矿纳米粒子。我们只需要通过调节不同的温度(50-170℃)和前体的种类以及比例,就可以得到不同尺寸(1 nm-10.4 nm)以及组分的卤化铅铯钙钛矿纳米粒子,实现钙钛矿纳米粒子发光范围从360 nm到700 nm的全覆盖。用这种方法合成的无机钙钛矿纳米粒子的吸收发射光谱强且尖锐对称,粒子尺寸均匀,形貌规则,荧光量子效率可达87%,实验重复性高,适合工业大规模生产,为将来钙钛矿纳米材料的大规模实际应用打下基础。我们进行了Mn离子掺杂无机钙钛矿的功能化研究。实验通过成核掺杂的方式合成了Mn:CsPbCl3粒子,然后通过离子交换的方法合成Mn:CsPbBr3和Mn:CsPbI3粒子。在一定的条件下获得了Mn离子掺杂发光和钙钛矿本征发光的双光体系。实验过程中随着Mn离子掺杂浓度的不断提高,Mn离子掺杂发光位置不变,强度不断增加。我们对其双光体系进行调控,钙钛矿本征发光可以从410 nm调节到480 nm,而Mn离子掺杂发光的位置保持在585 nm不变,在此基础上研究了Mn:CsPbCl3粒子荧光光谱随温度的变化,为Mn离子掺杂无机钙钛矿用作温度传感器打下基础。