论文部分内容阅读
本论文的内容主要包括两个方向:一、近藤绝缘体SmB6的奇异物性研究,主要用核磁共振,输运和比热的手段研究近藤绝缘体SmB6以及其掺杂效应;二、铁基超导体的强关联物性研究,主要利用核磁共振的手段研究重空穴掺杂的铁基超导体CsFe2As2和YFe2Ge2中的强关联物理以及低温的自旋涨落。按照以上的顺序,本论文分章节详细介绍了相关的研究结果,其中包括:通过详细的核磁共振实验研究SmB6中的能隙间电子态,并得出核磁共振上测量到的能隙间电子态与样品中的缺陷或是无序密切相关,另外,还在实验上发现巡游电子与局域电子的耦合在很高的温度就已经发生,远大于杂化能隙打开的温度;通过核磁共振、电阻率、磁化率和比热的测量,研究了掺杂近藤绝缘体Sm1-xYbxB6(0 ≤x ≤1)中的电子态不均匀性;通过位置选择的核磁共振测量,证明了在重空穴掺杂的铁基超导体CsFe2As2中单一自旋流体模型的失效;在YFe2Ge2中通过89Y的核磁共振测量,我们发现了由洪特耦合诱导的电子态渡越,并揭示了其与体系存在巡游磁性量子临界点之间的关系。本论文分为以下六章:1.绪论本章主要介绍近藤绝缘体SmB6的基本物理性质。包括近藤物理,拓扑近藤绝缘体的概念,以及目前在SmB6中的理论和实验进展。此外,我们还简介了铁基超导体,并着重介绍了铁基超导体中轨道选择的强关联物理。2.核磁共振基本原理本章内容主要简介了核磁共振的基本原理,以及凝聚态物理中常用的固体核磁共振方法。3.近藤绝缘体SmB6中由缺陷诱导的自旋-晶格弛豫率我们在高质量的SmB6单晶样品中测量了11B的自旋-晶格弛豫率和奈特位移,并结合比热和磁化率的测量。我们发现核磁共振测量得到能隙间电子态与样品中的缺陷和无序程度密切相关,缺陷或者无序诱导了能隙间电子态。由于SmB6中电子的强关联效应,里面的无序或是缺陷表现出独特的自旋动力学行为,这不同于普通能带绝缘体中的情形。此外,我们通过分析SmB6中随温度变化的电阻率,霍尔系数和Sm离子的价态,发现了局域电子与巡游电子的耦合在很高的温度TK~150K就已经发生,远大于杂化能隙打开的温度T*~40K,这说明近藤杂化发生在很大范围的温度区间,在TK之下,局域自旋就已经逐渐与巡游电子发生杂化,直到在T*附近打开近藤能隙。4.掺杂近藤绝缘体Sm1-xYbxB6中的电子态不均匀性电子态的不均匀在强电子关联的材料中广泛的存在。我们系统研究了掺杂近藤绝缘体Sm1-xYbxB6(0≤x ≤1)中的电子态不均性。通过分析单晶Sm1-xYbxB6(0 ≤x≤1)的电阻率、磁化率、比热和核磁共振的数据,我们发现随着掺杂量x从0增加到1,Sm1-xYbxB6逐渐从近藤绝缘体态过渡到电子态不均匀的重费米子态,最终进入到弱关联的金属态。有意思的是,在中等掺杂的区间,我们观测到了一个电子态极不均匀的重费米子金属态。Sm1_xYbxB6为研究重费米子材料中电子态的不均匀性提供了一个新的研究平台。5.重空穴掺杂的铁基超导体CsFe2As2中单一自旋流体模型的失效本章中我们用位置选择的核磁共振手段,分别测量75As和133Cs原子核的自旋-晶格弛豫率和奈特位移,我们发现在重空穴掺杂的铁基超导体CsFe2As2中,单一自旋流体模型在电子态渡越温度T*之上并不适用。在T*之上,75As和133Cs的奈特位移和自旋-晶格弛豫率具有不同的温度依赖行为,这表明系统存在着多种自旋自由度。这种情况归因于3d轨道同时存在着局域和巡游两种自由度,与轨道选择的莫特物理相符合。在T*之下,两个位置的奈特位移和自旋-晶格弛豫率又恢复到相同的温度依赖行为,表明系统进入到到单一自旋流体态,3d轨道的局域电子与巡游电子之间的耦合在这个过程中扮演了重要的作用。6.在YFe2Ge2中由洪特耦合诱导的电子态渡越以及巡游磁性量子临界在YFe2Ge2单晶样品中,通过89Y的核磁共振研究,我们发现了一个普适的由洪特耦合导致的电子态渡越行为,并且在渡越特征温度T*~75±15K之下,电子态的渡越会使得系统逼近于巡游的磁性量子临界点。在电子态渡越的过程中,奈特位移和体态的磁化率都表现出随温度非单调变化的行为,并且通过仔细分析K-χ关系,我们发现了所谓的奈特位移反常行为。类似的电子态渡越行为也在重空穴掺杂的铁基超导体AFe2As2(A=K,Rb,Cs)中被发现,并且认为这种行为是由洪特耦合导致的轨道选择的关联效应所引起。在T*之下,自旋-晶格弛豫率除以温度1/T1T表现出与奈特位移相一致的下降行为,这表明1/T1T的贡献主要来自于准粒子的贡献而非自旋涨落的贡献。这似乎与理论预言YFe2Ge2靠近磁性量子临界点相矛盾。然而,考虑到超精细耦合场上具有q依赖的抵消效应,A型的反铁磁自旋涨落恰好在89Y位置上被抵消,这也与最近的非弹性中子散射的结果相吻合。因此,我们的结果表明通过由洪特耦合导致的电子态渡越,YFe2Ge2的磁基态靠近于巡游的量子临界点,并且系统伴随着A型反铁磁涨落。此外,我们也讨论了在YFe2Ge2中由自旋涨落导致的超导配对,这也将有利于理解在AFe2As2中的超导配对机制。