论文部分内容阅读
电化学技术是利用电化学基本原理实现物质化学转化的技术,其应用涵盖了化学电源、电镀、电冶金、无机和有机电合成、电化学水处理、材料的腐蚀与防护、纳米材料的制备等诸多领域。电极作为实现电化学过程必不可少的材料,其结构和性能不仅影响电化学过程的速率、选择性、能耗等,甚至决定着整个电化学过程的成败。因此,电极材料的制备及其结构性能研究,尤其是耐酸阳极材料的研究和开发是电化学技术应用中值得关注的重要问题。本文采用聚合物前驱体法制备了Ti/Sb-SnO2膜,并通过对Ti/Sb-SnO2表面进行修饰制备了Ti/Sb-SnO2/PbO2和Ti/Sb-SnO2/MnOx电极,用X-射线衍射、扫描电镜、循环伏安、加速寿命实验等方法测定了电极的结晶结构、表面形貌、电化学活性表面积以及电化学孔隙率等,对电极的微观结构及电化学性能进行了分析表征,研究了金属氧化物电极的化学组成及制备方法对电极结构和性能的影响,并将不同的电极材料用于苯酚的电化学氧化降解及C,的电化学氧化过程。主要研究内容和研究结果如下:1.聚合物前驱体法制备的Sb-SnO2中间层的结构及其对电极性能的影响聚合物前驱体法是制备纳米材料的方法之一,近年来该方法也被用来制备金属氧化物电极,但将聚合物前驱体用于制备Ti/Sb-SnO2膜,系统研究Ti/Sb-SnO2膜的结构以及对多层金属氧化物电极性能的影响还未见报道。本文将聚合物前驱体用于钛基多层金属氧化物电极中间层Sb-SnO2的制备,研究了聚合物前驱体法制备的Sb-SnO2膜的结构和性能。研究结果表明,与不加中间层的Ti/PbO2电极相比,加入用聚合物前驱体法制备的Sb-SnO2中间层后,Ti/Sb-SnO2/PbO2电极的电催化性能及电极寿命明显提高。与传统的小分子醇类前驱体相比,聚合物前驱体法制备的Sb-SnO2结晶度高,表面均匀致密。在加速寿命实验条件下(60℃,1.0 mol·L-1H2SO4,4.0 A·cm-2),以Sb-SnO2为中间层的Ti/Sb-SnO2/PbO2电极的寿命达29.8小时,分别是传统的小分子醇类前驱体乙醇的2.1倍,乙二醇的4.3倍,正丁醇的4.8倍。聚合物前驱体能使Ti/Sb-SnO2/PbO2电极的性能明显改善主要是由于聚合物前驱体能均匀稳定地分散金属离子,而且聚合物前驱体还具有良好的流动性和粘性,克服了小分子醇类前驱体粘度低,在金属基体上附着性差,沉积效率低等问题。因此,聚合物前驱体法制得的氧化物膜结晶完善,其致密的氧化物膜不仅自身内应力小,不易脱落,而且也有利于减缓电解液向金属基体的渗入生成钝化膜,从而提高了电极的寿命。2.PbO2电极活性层的制备方法对电极结构和性能的影响分别采用热分解法、电沉积法和铅基电化学阳极氧化法制备了铅氧化物电极,探讨了铅氧化物电极活性层的制备方法对电极结晶结构及表面形貌的影响,研究了不同制备方法下电极的电化学活性表面积及电化学孔隙率。研究结果表明,电极的制备方法对PbO2活性层的结构和性能有显著的影响。将Pb(NO3)溶液涂覆于钛基体上热分解直接得到的是以Pb3O4为主的铅氧化物,Pb3O4在电解液中经阳极氧化后才转化为β-PbO2。Pb(NO3)溶液阳极电沉积法以及硫酸介质中铅基电化学阳极氧化法则可直接制得以β-PbO2为主要成分的PbO2电极。虽然三种方法都可以制得PbO2活性层,但由于制备方法不同,其微观结构有很大的差异,因此电极的电催化活性也不同。PbO2电极的总伏安电荷和电化学孔隙率反映了电极析氧电化学活化表面积的大小和分布,热分解法制备的PbO2电极总伏安电荷为57.1 C·cm-2、铅基电化学阳极氧化法为20.1C·cm-2,电沉积法仅7.5 C·cm-2;对应的电化学孔隙率分别为97.4%、90.5%、82.7%。电沉积法制备的PbO2电极的伏安电荷和电化学孔隙率都是三者中最低,主要与其紧密堆砌的块状结构以及较大的晶粒尺寸有关。加速寿命实验条件下,不同方法制备的电极在电解过程中的槽电压及电极的微观结构的研究表明,无论是热分解法还是电沉积法,电解过程中槽电压都有一个较长的稳定期,失活过程则相对较短。电极失活后,XRD谱图及能谱图上都有明显的钛基体的峰,而活性层和中间层金属的相应特征峰强度则明显下降甚至消失,表明电极失活源自氧化物层的脱落。与热分解法相比,电沉积法制得的紧密堆砌的PbO2块状结构虽然降低了它的电催化活性,但却有利于提高电极的稳定性和寿命。在相同的加速寿命实验条件下,电沉积法制备的Ti/Sb-SnO2/PbO2电极的稳定期达86小时,其加速寿命达89.8小时,是热分解法的3倍以上。3.非贵金属氧化物电极的制备及结构与性能研究贵金属氧化物电极由于其成本高而使工业化应用受到限制。因此,本文分别对三种非贵金属氧化物电极(Ti/Sb-SnO2、Ti/Sb-SnO2/PbO2和Ti/Sb-SnO2/MnOx)的制备以及结构性能进行了研究。Ti/Sb-SnO2电极的制备采用了聚合物前驱体法,然后用热分解法对Ti/Sb-SnO2电极表面进行修饰制备了含Sb-SnO2中间层的Ti/Sb-SnO2/PbO2和Ti/Sb-SnO2/MnOx电极,研究了电极的制备条件对其微观结构和性能的影响,并以硫酸溶液为介质,研究了电极的析氧催化活性。研究结果表明,电极的制备条件显著影响电极的微观结构,从而影响电极的电催化性能及寿命。所研究的三种电极在硫酸介质中析氧电势由高到低依次是Ti/Sb-SnO2、Ti/Sb-SnO2/PbO2、Ti/Sb-SnO2/MnOx;相同电极电势下的析氧速率也是Ti/Sb-SnO2电极最大,Ti/Sb-SnO2/MnOx则最小。4.电极材料对苯酚电化学氧化降解及Cr3+电化学氧化过程的影响苯酚电化学氧化降解属于有机物的电化学氧化,而酸性介质中Cr3+电化学氧化再生Cr2O72-则是典型的无机阳离子的电化学氧化过程。本文以这两种典型的电化学氧化过程为研究体系,研究探讨了不同化学组成、不同制备方法制得的电极材料对电化学反应过程的影响。结果表明,三种非贵金属氧化物电极,即Ti/Sb-SnO2、Ti/Sb-SnO2/PbO2和Ti/Sb-SnO2/MnOx电极,都可以使苯酚氧化降解,但反应速率明显不同。Ti/Sb-SnO2电极最快,在25℃下其表观反应速率常数为6.66×10-2min-1,分别是Ti/Sb-SnO2/PbO2和Ti/Sb-SnO2/MnOx电极的2.7倍及4.7倍。但是,在电化学氧化Cr3+时发现,Ti/Sb-SnO2电极的反应速率明显低于Ti/Sb-SnO2/PbO2电极,25℃下其表观反应速率常数仅为Ti/Sb-SnO2/PbO2的约1/4;而Ti/Sb-SnO2/MnOx电极则不能用于Cr3+的电化学氧化。无论是在苯酚溶液还是在Cr3+的硫酸溶液中,三种电极的析氧电势由高到低的顺序均为Ti/Sb-SnO2、Ti/Sb-SnO2/PbO2、Ti/Sb-SnO2/MnOx,但是在不同的电化学过程中其电催化活性的顺序却不相同,表明阳极材料对电化学氧化过程的影响不仅与电极材料自身的性质有关,还与电化学反应过程的特性有关,其影响规律还有待于进一步研究。