【摘 要】
:
精密定位是纳米级别的一种高精度定位技术,在高科技领域,特别是半导体芯片的生产中,占据着十分重要的地位。因此精密定位技术已成为世界各国研究的重点,而国内在这项技术上的研究起步较晚,提高定位精度和测量精度一直是该研究方向的难点。为了解决这个问题,本文首次采用先进的调频连续波(Frequency Modulated Continuous Wave,FMCW)测量技术,以压电驱动的精密位移台为基础,设计了
论文部分内容阅读
精密定位是纳米级别的一种高精度定位技术,在高科技领域,特别是半导体芯片的生产中,占据着十分重要的地位。因此精密定位技术已成为世界各国研究的重点,而国内在这项技术上的研究起步较晚,提高定位精度和测量精度一直是该研究方向的难点。为了解决这个问题,本文首次采用先进的调频连续波(Frequency Modulated Continuous Wave,FMCW)测量技术,以压电驱动的精密位移台为基础,设计了纳米级精密位移平台及其控制系统,实现了纳米级高精度定位。首先,研究分析了FMCW激光干涉测量原理,以索雷博Nano Max压电位移台为基础,设计并搭建压电精密位移平台及其控制系统。控制系统包括:压电驱动的位移台、FMCW激光干涉位移传感器、光学干涉测量结构、控制端软件。其次,利用Qt平台和C++语言设计和编写了控制端软件,软件包括:压电控制器的驱动控制、FMCW位移传感器的数据接收及解析、界面设计、绘图、数据显示、文件保存、控制方式选择等功能。然后,针对环境的扰动和压电陶瓷材料自身的迟滞和蠕变等特性进行了分析,本文选择开环、闭环、PID控制方式,编写了三种控制方式下的算法程序,并对PID控制进行了参数的整定。本文在相同的实验条件下,对三种控制方式进行对比实验。实验结果表明:开环控制无法消除压电陶瓷自身的非线性,系统稳定时与设定值相差较大;闭环控制可以消除非线性带来的误差,但调节时系统存在较大的超调和震荡震荡;PID控制定位时间快、系统平稳性较好。最后,通过PID控制下的实验,结果表明:系统的定位行程为30um,定位标准差约为3.53nm,平均定位时间约为0.87s。本课题设计的精密位移平台能够达到纳米级位移控制,在高端光刻机上具有极大的应用前景。
其他文献
随着我国居民收入水平和健康意识的提高,人们对蔬菜、水果等食物营养含量的重视也随之增加。优质苹果可以在市场上展现出了更强的竞争力,目前苹果的需求量也在不断增加,但是传统的人工分拣方法费力、费时、技术劳动强度大、破坏性大。近年来,可见/近红外光谱分析技术以低成本、快速、非破坏性、精确和可持续的特点而闻名,被广泛用于农产品的无损检测。然而,但仍然存在检测指标单一、准确率低、系统鲁棒性差等问题。为了解决以
自动导航技术是实现靶场智能化的重要前提,它能有效的提高靶车在训练过程中的精度与效率。针对无人靶车自动导航问题,本研究以无人靶车的自动导航算法为研究对象,采用北斗-RTK系统、惯性导航传感器融合系统,设计了无人靶车路径跟踪控制算法,开发了无人靶车自动导航系统试验平台,研发了基于C#的上位机软件,最后通过试验验证导航平台的性能。主要研究工作如下:(1)开发基于RTK-BDS的无人靶车自动导航系统硬件平
随着高新武器的发展,装备红外制导的武器已成为现代战争的主流作战手段,在研制过程中需要进行必要的靶标跟踪测试。为了验证红外制导武器的性能,需研制一种适合外场使用,具有可信评估效果且能够模拟不同条件下地面军事目标红外辐射特性的模拟靶。本文针对地面运动目标制导需求,基于地面军事车辆的热辐射理论模型,建立了装甲车在动态条件下的红外辐射模型,依据该模型建立了相应的靶标实物,以实现对装甲车的红外模拟。论文具体
光纤法布里-珀罗(Fabry–Pérot,F-P)传感器在高动态压力测量方面应用潜力大,具有抗电磁干扰性强、耐腐蚀性好、动态响应速度快等优点。但光电探测器帧频速度限制了其在航空航天、军事武器和石油钻井等极端环境中的应用。本文针对航空航天等领域极端环境下的高动态压力测量需求,设计了基于分时曝光的高帧频光纤F-P传感器测量系统。突破典型测量系统中单个光电探测器帧频速度的限制,引入“流水线”的思路对多个
随着计算机视觉技术的不断发展,基于深度卷积神经网络的目标检测技术相较于传统机器学习算法在准确性和实时性方面都取得了突破性的提升。在海面环境下,通过使用基于深度学习的海面目标检测算法对浅层语义特征进行更深层的抽象表述,可以高效的提取帆船、轮渡、皮艇等海面目标的特征,从而提高检测精度。随着对模型精度要求的不断提升,现今的模型结构变得越来越复杂,因此导致了计算量和参数量的大幅增加,进而极大地阻碍了模型的
随着现代光学产业的不断发展,精密光学元件的应用已经在航空航天、医学、军事、天文、日常生活等各大领域越来越广泛。由光学元件组成的光学系统已在高功率激光器、大型集成电路、医疗设备等光电子领域发挥了极其重要的作用。在各种光学仪器的使用和开发中,光学元件发挥着极其重要的作用。光学元件表面缺陷是由于加工过程中的不当处理所造成的,其产生的散射光会对光学系统产生各种危害,如:降低光束质量、引发热效应、增大系统噪
国内对单兵光电装备的低照度成像能力和国产化需求不断增长,本文研究了国产嵌入式系统和低照度图像增强的关键技术,设计了基于国产低照度CMOS和海思SD3403平台的低照度CMOS嵌入式图像处理系统。首先,本文分析了系统的技术指标和功能要求,通过查阅论文,梳理了基于低照度CMOS的嵌入式图像处理系统总体方案,将整个系统划分为硬件模块和软件模块两个部分,并最终制定了整体系统软件的工作流程。其次,硬件模块方
光学成像系统作为现代科技中不可或缺的一部分,广泛应用于医学、航空航天、工业、安防等领域。由于其性能的优劣直接影响到成像质量和应用效果,对光学成像系统的性能测试与评价具有重要的意义。传统刀口法测量存在边缘扩散函数采样不均匀、采样不足等缺点,使得测试的成像系统调制传递函数(MTF)误差较大。为了解决这个问题,在对现有测量方法进行分析与研究后,本文提出一种新的测量方法倾斜刀口法,并且给出了相关算法。主要
无铅压电陶瓷具有较好压电性能的同时具备环境友好的特性,可以用来制作环保型压电传感器。本文研究了无铅压电陶瓷的组分设计、制备工艺、性能测试以及其在压电加速度传感器中的应用。无铅压电加速度传感器具有体积小、重量轻、灵敏度高、环境友好、安装方便等优点。压电加速度传感器的性能与其核心压敏元件所使用的压电陶瓷材料密切相关。采用传统固相烧结法制备出(1-x)K0.5Na0.5NbO3-xCaZrO3(x=0.
海洋环境的复杂性使水下生物养殖、海洋测绘以及海底工程应用等行业实施困难,耗费财力巨大。随着科学技术的不断发展,人工智能的发展为解决其问题提供新方法。利用水下机器人的视觉引导完成这些危险任务,不仅保障人类自身的安全,而且还降低成本。现如今,水下机器人获取目标主要方式为声信号和光信号。其中,光信号对目标表达能力更强,获取信息可靠程度更高,因此在海洋侦测领域应用较为广泛。虽然图像获取具有视觉优势,但是海