论文部分内容阅读
修复各种原因(创伤、感染、肿瘤切除、先天性疾病等)引起的骨缺损一直是骨科临床、生物材料学、组织工程学等领域共同关注的难题,而传统的骨修复材料(自体骨、异体骨、生物材料等)均存在不同程度的缺陷,因此,客观上要求人们寻找理想的骨替代物。骨组织工程于20世纪80年代应运而生,其特点是将种子细胞植于细胞支架材料上,形成组织工程化骨后再植入骨缺损部位。其中支架材料是当前骨组织工程研究的热点。理想的骨组织工程支架需具备的条件包括:(1)良好的生物相容性;(2)良好的生物降解性或生物吸收性;(3)支架材料的降解速率应与骨形成能力相适应;(4)良好的多孔结构,平均孔径在200~400μm之间;(5)具有很强的渗透能力;(6)精确的空隙尺寸以适合种子细胞的生长;(7)良好的力学性能为细胞提供适宜的微应力环境;(8)适宜的表面结构以促进细胞的粘附;(9)增强细胞分泌细胞外基质的能力;(10)可充当信号分子如生长因子的载体。现有支架材料包括天然和人工合成两大类,研究较多的有胶原(collagen)、聚乳酸(polylatic acid, PLA)、聚羟基乙酸(polyglycolic acid, PGA)、聚甲基丙烯酸甲酯(polymethylmethacrylate, PMMA)、羟基磷灰石(hydroxyapatite, HA)、磷酸三钙(tricalcium phosphate, TCP)、珊瑚(coral)等。其中合成高分子具有性能可控、无免疫排斥反应以及生物相容性好等优点,PLA、PGA以及PLGA是目前应用最广的几种可降解性材料,其不足之处在于:机械强度不足,降解产物呈酸性不利于骨细胞生长,降解速度与成骨速度欠协调,残留的有机溶剂有毒等。针对当前骨组织工程支架材料存在的缺点,本研究在收集分析大量文献的基础上,选择赖氨酸盐合成赖氨酸二异氰酸酯,再将后者与甘油聚合得到赖氨酸二异氰酸酯-甘油共聚物,应用超临界抗溶剂结晶技术(SAS)、超声分散等手段将高分子材料纯化、纳米化,并用溶剂浇铸/颗粒滤沥法(SC/PL)获得具有一定孔径和孔隙率的高分子支架材料。本课题重点研究高分子材料的制备工艺、理化特性、降解特性和生物相容性,并将高分子材料与纳米羟基磷灰石(HA)制得仿生复合材料修复动物骨缺损。本研究的实验内容分为5个部分进行:一高分子纳米材料的制备及表征1本实验以赖氨酸盐、二(三氯甲基)碳酸酯为原料,改进传统工艺合成赖氨酸二异氰酸酯(LDI),然后以赖氨酸二异氰酸酯与甘油聚合获得高分子材料。2通过超声分散、乳化/溶剂扩散法和超临界抗溶剂结晶技术(SAS)等手段分别制备出液相和固相的高分子微粒。通过电镜观察,液相高分子纳米粒尺寸为80.0~200.0 nm(平均为140.0±56.3 nm),分布比较均匀。SAS制备的固相纳米晶须尺寸为100.0~350.0 nm(平均为156.0±67.5 nm)晶须相互交织形成孔径为100.0~400.0μm(平均为276.0±87.2μm)的孔隙,孔隙率为75.6%。3通过一系列方法对高分子材料进行表征,测得聚合物的玻璃化温度(Tg)为88.6℃,接触角为67.3°,初始压缩强度为4.26±0.78 Mpa、抗断裂强度为11.63±2.30 Mpa。证实该高分子材料具有作为组织工程支架材料所需要的物理特性。4制备高分子纳米粒的全过程均采用无毒原料和无毒工艺,有机溶剂基本去除,获得的高分子材料纯净、无毒,符合“绿色化学”的观点。二高分子纳米材料的体外降解研究1通过检测pH值、亲水性、重量、机械强度变化及降解产物探讨赖氨酸二异氰酸酯-甘油聚合物(LDIG)在体外的降解规律,证实本材料是一种理想、无毒、可生物降解的高分子材料。2 LDIG的重量在头6周内变化小,6周后下降加快,10周约保留初始重量的一半,即材料的重量丧失具有先慢后快的特点。3 LDIG浸泡液的pH值在12周的降解过程中十分恒定,12周时溶液的pH值为7.35。因此,LDIG聚合物的降解行为不会影响介质的pH值。4 LDIG于6周内压缩强度衰减较慢,6周后稍快,8周时强度衰减至初始强度的一半,可见机械强度与重量、亲水性随着材料降解而出现相应的衰减。5 LDIG材料的体外降解属于聚氨酯的酯键水解作用,其降解产物是无毒小分子物质:赖氨酸、甘油、乙醇和CO2。三高分子纳米材料的生物学评价1根据国家卫生部《生物材料和医疗器材生物学评价的技术要求》的相关规定,对高分子纳米材料(n-LDIG)进行急性毒性实验、溶血反应、热原实验和肌肉内植入实验,结果表明,该材料无毒性,无热原性、不引起溶血反应,植入后局部组织反应小,完全符合文件中的标准要求。2高分子纳米材料(n-LDIG)具有良好的生物学特性,符合作为骨组织工程材料的基本条件。四纳米羟基磷灰石/高分子(n-HA/n-LDIG)复合型骨修复材料的构建及表征1 n-HA/n-LDIG复合生物材料在化学组成上与人自然骨相近,其力学性能与人自然骨力学性能接近,具有较好的力学相容性。HA纳米晶体对LDIG有增强作用。2复合材料的生物相容性及力学性能与两相间的界面有关。n-HA晶体与LDIG分子链间有化学键合、氢键连接及电荷吸引作用,具有较强的结合力。3 n-HA加入到n-LDIG基体中除增加n-HA/n-LDIG复合材料的弯曲模量外,其它力学性能略有下降。小粒径HA对提高复合材料的弯曲强度、剪切强度有利。五高分子纳米骨修复材料(n-HA/n-LDIG)修复家兔腿骨缺损的研究1通过热致相分离(TIPS)和乳液共混获得高分子纳米骨修复材料(n-HA/n-LDIG),并成功修复家兔腿骨缺损,证明两者复合后,能发挥良好的修复重建作用。2高分子纳米骨修复材料(n-HA/n-LDIG)在骨缺损部位可逐步降解并与骨修复相适应。3骨缺损修复实验表明,高分子纳米骨修复材料(n-HA/n-LDIG)具有良好的生物相容性和骨传导性,成骨作用明显,可有效修复长骨穿通性缺损。