激光等离子体天体物理喷流实验和亚TeV电子产生

来源 :中国科学院大学 | 被引量 : 0次 | 上传用户:lianlianforever
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着能够在极短时间内输出大能量装置的出现,很多天体物理系统的局域或者整个物理可以被实验室实验再现。这些装置能够在极短的时间内把极高的能量沉积在极小的体积里,产生的物质是能量密度接近天体物理系统的等离子体。对这种实验室等离子体的直接和精确测量,能够探测天体物理系统的一些重要物理并测量它的一些重要参数以备标定相关的计算工具。  在本文展示的工作中,使用“神光”Ⅱ(SG-Ⅱ)激光装置的四束主激光烧蚀半圆柱壳层靶(半腔靶)产生了高速等离子体喷流。喷流的参数由光学和X射线诊断测量。喷流是准直的,在真空中传播。一维流体力学模拟被用来间接地计算喷流的速度。喷流的准直可能归因于主激光烧蚀出的等离子体的膨胀致冷。高Z等离子体的辐射致冷也可能在等离子体喷流的准直中起作用。由于和年轻恒星喷流具有某些几何相似性,实验室喷流对于在实验室中模拟年轻恒星喷流具有潜在应用。  我们的研究表明:峰值强度为1022-1025Wcm-2量级的圆偏振激光脉冲的有质动力场可以直接加速并产生GeV-TeV的单能电子束,其中被加速电子的能量与激光脉冲的峰值强度成线性定标关系。为了获得更高能量的电子束,本文通过对一维解析模型的分析得到:如果电子束在激光传播的方向上具一个初始能量E0,那么这种线性的定标关系可以被打破,被加速电子束最终的能量可以被放大一定倍数。这是由于具有一定初始能量的电子束不容易被激光脉冲抛在后面,进而获得更高的加速距离。二维粒子模拟结果显示:当电子束的初始能量E0为MeV量级时这个方法是有效的,而当E0过大时这个方法失效。这是因为当电子的加速距离远大于激光脉冲的瑞利长度时,激光强度的衰减使得电子束的加速错过了最佳加速场。
其他文献
偏振探测方法在大气气溶胶和云遥感方面具有独特优势,通过与多光谱、多角度等探测方法相结合,能够进一步提高探测精度,已经成为国际上的研究热点。  论文结合高精度偏振扫描仪
原子磁强计是一种利用原子的极化自旋磁矩在磁场下做相干拉莫尔进动的现象进磁场强度或磁矩测量的精密测量技术,是目前理论灵敏度和实验灵敏度最高的磁强计。原子磁强计结构简
该文利用扫描电镜(SEM)、透镜电镜(TEM)、高分辨电镜(HRTEM)、电子能量损失谱(EELS)、Raman散射等方法,对制备的硼纳米线及其垂直取向的列阵、羽毛状硼纳米线及其列阵、含氮
该文结合浅海实验数据对远程数字水下通信方法进行了研究.尤其对通信编码和解码算法、信号多普勒容限以及水声信道匹配问题作了详细探讨.实验数据处理结果表明,合理设计低频
该文应用相互作用玻色子模型系统研究了稀土区原子核的四极形变和八极形变.
具有良好光电性能的半导体发光薄膜是光电子信息技术的基石.利用荷能团簇成膜装置和同位素分离器,应用ECI沉积技术和离子注入技术合成了三类半导体发光材料,进行了初步的研究
近年来,二维材料石墨烯引起了人们广泛的研究热潮。作为二维材料家族的重要成员,过渡金属硫属化物具有可调的0.8-2.1eV的带隙,因此是构筑下一代电子学、光电子学器件的理想材料
稀土共伴生矿中镨钕资源的大量开发与使用造成了镧铈资源的积压,拉大了镧铈金属与镨钕金属之间的价格差距,制备高性能、高铈含量的稀土永磁材料随之成为磁学领域的研究热点之一
许多托卡马克装置的高功率离子回旋波注入实验中,参量衰变不稳定性(PDI)过程的出现降低了加热效率,并可能在边界区域激发快离子和增加杂质。尽管实验上可以测量PDI的频谱,但是由
In(Ga)As/GaAs自组织量子点激光器是下一代半导体激光器的代表之一.该文系统讨论了它的结构、制备、性能和优化,以及一些相关的物理机制.(1)研究了在GaAs部分覆盖的InAs岛中