论文部分内容阅读
计算流体力学(CFD)在船舶与海洋工程领域的应用越来越受到重视,并开始进入实用化阶段。然而,由于水面无人艇运动的高速性和复杂性,以及艇身附近粘性流场的计算困难,在预报水面高速无人艇的水动力特性方面,CFD技术目前尚未达到实用化程度。因此利用现代数值技术对滑行艇在风浪影响下粘性流场水动力特性计算具有重要的工程意义和价值。本文首先对滑行艇水动力特性研究领域中的CFD发展和应用现状,进行了回顾和分析,然后利用流体力学的基本理论和方法建立了描述滑行艇流体动力特性的数学模型,并完成了系列数值计算。具体工作和主要结论如下:1)通过求解RANS方程,对二维滑行平板无界粘性流场进行了验证性数值模拟,探讨了平板在不同工况下的动升力系数、阻力系数、载荷系数以及动压力中心位置随速度的变化规律。将升力系数的数值计算结果与SIT法以及查结法进行比较,并利用经验公式与阻力系数进行比较分析,得出阻力系数和升力系数都随着攻角的增大而增大,在Fr<3时,阻力系数和升力系数变化明显,当平板进入滑行阶段时,这种变化减弱。2)开展了二维滑行艇流体动力特性的数值计算研究,实现了二维滑行艇在攻角为5°、10°、15°工况下的空气动力载荷对流体动力系数影响的研究。对比了0°、5°和10°攻角下滑行艇在傅汝德数为0.5、2、3、4、5工况下空气载荷数值模拟结果,得出空气载荷的影响随着傅汝德数的增大而增大,对10°攻角滑行艇的力矩影响突出。3)利用推板式造波方法数值模拟了规则波产生过程,二维模型的数值模拟基本可以描述出包括射流、破碎、翻卷等复杂的流体非线性现象对滑行艇运动的影响,给出了波浪参数及其对滑行艇运动参数的影响,对滑行艇在波浪中运动的非线性问题进行了尝试性描述。4)将二维滑行艇横剖面简化为楔形体结构,对其入水砰击问题进行了数值计算研究。通过对自由液面变化以及相关参数的分析,得出砰击压力峰值的位置位于喷射区的根部附近,一般出现在楔形体倾斜边的2/3处左右,楔形体入水时的砰击压力系数随斜升角的增大而减小,随砰击速度的增大而增大,压力系数k1在β=3°左右出现最大值。