碳纳米管增强热塑性聚氨酯复合材料的机械和形状记忆性能研究

来源 :南昌大学 | 被引量 : 0次 | 上传用户:afanti76
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
热塑性聚氨酯(TPU)是一种具有特殊结构的聚合物,它是由软链段和硬链段通过共聚组成的嵌段线性聚合物,这一特殊结构导致它既具有高弹性,还具备一定的可塑性。因此,TPU在汽车行业、医疗行业、传感器行业等方面都有着重要的应用。但TPU在作为形状记忆性聚合物时,其耐热性能和强度等方面表现较弱,限制了其应用范围,为了拓展TPU的应用范围,改善其性能成为了研究重点。碳纳米管(CNTs)作为一种优秀的无机纳米材料,本身具有良好的力学性能、导电导热等性能,成为了改性聚合物的优良填充物。本文通过硫酸(H2SO4)/硝酸(HNO3)混合溶液对CNTs颗粒表面进行处理,使用处理过后的CNTs与TPU熔融共混制备出CNTs/TPU复合材料(含量为1wt%、2wt%、3wt%、5wt%)。使用旋转流变仪测试样品的流变行为;采用X射线衍射仪(XRD)测试样品的结晶行为;通过差式量热扫描仪(DSC)和热重分析仪(TGA)测试样品的热结晶温度以及热稳定性能;使用万能试验机、多功能摩擦磨损试验机、纳米压痕仪等仪器,测试并分析CNTs/TPU复合材料样品在力学、摩擦学等方面的表现;通过自制设备对复合材料的形状记忆行为进行测试,观察样品在热刺激条件下的形状恢复与形状保持效果。试验结果表明,经过混合酸溶液表面功能化改性过后的CNTs在TPU基体中形成了良好的分散性和相容性。酸化改性CNTs的加入,在一定程度上提高了CNTs/TPU复合材料的储能模量和损耗模量,并且在高频剪切下保留了复合材料的加工流动性。在酸化改性CNTs加入TPU基体后,相较于纯TPU而言,CNTs/TPU复合材料的熔融结晶温度向高温区移动,软硬段热降解温度分别提高至335℃和415℃,这说明复合材料的热稳定性增强。在力学性能方面,相较于纯TPU材料,CNTs/TPU复合材料的抗拉强度和抗冲击强度得到增强,其中在2wt%CTN/TPU复合材料中达到最大。CNTs的加入,复合材料的硬度以及耐磨擦性能也得到了一定程度的提升。在形状记忆性能试验中,随着CNTs加入,复合材料的形状恢复以及形状保持效果均呈现先增加后降低的趋势。对于CNTs/TPU复合材料的形状恢复和形状保持效果,随着CNTs的加入,相较于纯TPU材料,虽然有略微延迟,但是恢复效果得到一定的提高。并且在CNTs含量达到2wt%时,复合材料的形状恢复和形状保持效果最好。随着记忆循环次数的增加,所有材料的形状恢复以及形状保持效果都有所下降,但2wt%CNTs/TPU复合材料的效果始终优于纯TPU材料。
其他文献
心力衰竭,是一种常见的临床症状群,是各种心脏病的严重阶段。针对心力衰竭患者,人工心脏是提供了机械循环的手段向人体血液循环系统提供血液动力,以全部替代或部分替代自然心脏泵血的功能。本文展开对小型化高效率短中期离心式磁悬浮心室辅助装置的磁场内外控制模型的研究,设计并搭建了实验平台。具体研究内容包括如下几个方面:(1)对小型化高效率心室辅助泵的血液相容性评价进行了阐述,分析了心室辅助泵的所需要的输出指标
学位
丘陵山地果园由于路面石块、杂草等障碍物以及果园复杂的地形、土壤硬度等原因造成履带式、轮式移动平台不能自如地在果园中行走。然而,足式机器人因其能灵活地落足于地面且跨越障碍的能力较好,是丘陵果园实现机械化的重要研究内容。针对如此复杂的环境,机器人要保持稳定行走,其足端作为直接与地面接触的对象,是机器人能够行走于丘陵果园的重要保证。通过结合丘陵果园生产管理工作需求,对机器人不同足端进行归纳总结,得到足端
学位
随着我国第五代无线通信系统的标准化和全面商用化的加速推进,为了契合人民对于高流量密度、高连接密度,以及高移动性能的需求,无线通信领域将以无与伦比的高节奏、高效率和多样化的速度发展,但这必将使得无线通信系统的安全性能面临非常严酷的挑战。本文主要研究非可信中继网络物理层安全传输策略,主要的研究内容和研究成果如下:通过对物理层安全的深入研究,在无线通信中,利用在源节点处注入人工噪声信号,使用基于功率分配
学位
近几年智能情感陪护机器人技术有了跨越式的发展,情感陪护机器人开始从研发的实验阶段转化为商品,逐渐走入人们的生活之中。然而根据目前人机关系的发展,针对情感陪护机器人功能设计没有统一的基本要求,导致产品功能经常过剩或不足。因此,本课题从提升被陪护对象幸福感角度出发,本着完善人机关系的宗旨,对被陪护对象的幸福感影响因素进行分析,然后根据分析结果对情感陪护机器人功能设计提出统一的基本要求,使情感陪护机器人
学位
中国铁路发展迅速,是国家向世界展示自我的闪亮名片。作为提高人民生活质量、连接区域经济建设、增进国际文化交流的媒介,铁路发展日新月异,这让我们感到兴奋自豪,但其快速发展带来的“高速化”和“重载化”趋势也给轨道的安全维护提出了更高的要求。轨道的维修作业既要面对任务量巨大带来的压力,又要应对因运行密度大而被压缩的天窗时间的限制。为了解决这一矛盾,专家学者们正致力于将按照周期检修轨道的“周期修”向按照轨道
学位
随着电动汽车的发展,人们对电动汽车锂离子动力电池的容量和充电功率的要求不断提升,以风冷和液冷为代表的第一代和第二代冷却系统已难以对动力电池的温度进行有效的管控,迫切需要开发以冷媒直冷为代表的第三代动力电池冷却系统。为了能够更好发挥冷媒直冷方式的优势,本文将毛细芯加入冷媒直冷结构中,探讨毛细芯在冷媒直冷结构中的冷却效果,主要完成以下工作:通过数学模拟、理论分析及实验验证,建立毛细芯输液模型,模拟毛细
学位
聚乳酸(PLA)和聚-β-羟丁酸酯(PHB)都是环保、可降解的生物材料,但生物材料在机械性能、成型性能及耐老化性方面普遍存在不足,而玄武岩纤维(BF)是一种天然纤维,其具有强度高,耐酸碱,耐氧化等诸多优点;将BF与可降解生物复合材料混合,弥补生物材料的性能短板,制备出绿色环保的高性能可降解复合材料,将成为很有意义的研究。国内外对PLA/PHB研究大多数关注在薄膜研究上,对PLA/PHB复合材料在成
学位
选区激光熔化(SLM)工艺成形的合金构件具有尺寸精度高、力学性能优异的优势,在个性化生产中具有广泛的应用前景。Al-Si系合金具有高强度、低密度、耐腐蚀等特点,在航空航天和军工领域得到广泛的应用。但对于SLM成形的Al-Si系合金,目前广泛研究和应用的Al Si10Mg合金在力学性能上还存在一定的局限性,因此对选区激光熔化铝硅合金提出了更高的性能需求。本文针对添加微量稀土元素的AlSi9Mg1Sc
学位
目前,镁和镁合金由于其可降解性及物理性质在生物医用材料应用领域内受到了很多关注,但是生物医用镁合金在体液中的腐蚀速度过快,容易过早失去其使用功能,这严重制约了其使用范围。因此,为满足社会市场对生物医用材料巨大需求,提高镁合金的耐蚀性并且对镁合金的腐蚀机制机理进行系统性研究是非常必要的。本文选用具有良好生物相容性的Mg-3Zn合金作为基体合金,采用微合金化工艺,选用适用人体的Sr和Nd元素作为合金化
学位
非晶合金具有优异的硬度、耐蚀性、和耐磨性等,在工业与生活上得到了广泛的应用。目前就如何制备出性能更优异的非晶涂层成为当前学者的一个重要研究方向。本文分别采用微弧火花沉积技术和电阻缝焊技术制备了Zr基非晶合金涂层和Fe基非晶/陶瓷WC复合涂层。并对涂层的组织结构、物相组成、硬度和耐磨性等进行了研究与分析。采用微弧火花沉积技术在TC4表面制备了Zr基非晶涂层,研究了涂层的微观组织结构及涂层在不同摩擦时
学位